
CSE 451: Operating Systems

Autumn 2020

Module 13

Redundant Arrays of Inexpensive Disks

(RAID)

John Zahorjan

Background

• We start with very static formatting
• Superblock/inode/free block map locations are absolute positions on disk

• 1 disk = 1 file system

/etc/passwd

/etc

/

Disk 1
(C drive)

Background (cont.)
• One file system = one disk was too rigid

• If file system was corrupted, you lost everything
• Could have only one file system

• One blocksize, for instance
• Backups are often done on a file system, so schedule for most important and least

important data would be the same
• This is a logical backup – a backup of the ADT that is the file system

• Disk backups (copying the disk at the block level) involved the entire disk

Disk Partitions

One device, two partitions

Partitions

Using Multiple Partitions (Linux)
• There is a single tree of names

• So there is a single root, “/”
• (Contrast with Windows, which has a forest: C:\, D:\, ...)

• Use “mount” to extend file system namespace to span multiple
devices (or partitions)
• $ mount /dev/sda2 /home

/etc/passwd

/etc
/jz

//

/home

Disks or partitions

/etc/fstab

Configuration file for use during boot

/etc/fstab
Created by anaconda on Wed Sep 14 17:35:23 2016
#
Accessible filesystems, by reference, are maintained under '/dev/disk'
See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info
#

UUID=8e3edd2f-eb93-4876-9d76-a929a5ac6fd9 / zfs rw,nodev 0 0
UUID=d3b5ced1-a961-40a8-8585-acf3a2676949 /boot ext4 rw,nosuid,nodev 1 2
UUID=82f54c67-e64c-444f-8296-4961b20e283e /tmp zfs rw,nosuid,nodev 0 0
UUID=8b1dc520-3a63-4c48-9bd4-871894cf9cdb /var zfs rw,nosuid,nodev 0 0
UUID=2b2fd4ea-0c2e-4e3e-a4c0-8a7ce31e0347 swap swap defaults 0 0

(Finally...) RAID

• Redundant Array of Inexpensive Disks

• “Disks are cheap” means bytes are cheap

• Bytes are cheap means you can afford to waste them if it helps you

achieve other goals

• What goals are there, besides capacity?

• Performance

Two disks vs. one

• How is “peak performance” affected?
• Are read times cut in half? Is write throughput doubled?

• Can we do better?

/etc/passwd

/etc
/jz

//

/home

bigdata.db

Improving “Single Threaded” Performance

• If we locate data of individual files on multiple devices, we can
improve read/write peak performance even for individual files

• This is called striping

bigdata.db bigdata.db

Raid Basic Idea

• Improve performance by striping individual files across multiple disks
• we can use parallel I/O to improve access time even when overall I/O

demand is bursty/low
• but...

• More disks → more disk failures
• 10 disks have about 1/10th the MTBF (mean time between failures) of one

disk, and...
• if files are striped, any single disk failure causes loss of every file

• So, we want striping for performance, but we need something to help
with reliability

10

Reliability through Redundancy
• The issue: disk failure

• not software failure (it’s not journaling/crash tolerance)
• not user error (it’s not backup)

• To achieve reliability, add redundant data that allows a disk failure to be
tolerated
• We’ll see how in a minute

• At the scales we’re currently considering (tens of disks), it’s typically enough
to be resilient to the failure of a single disk
• What are the chances that a second disk will fail before you’ve replaced the first

one?
• Er, it has happened to us!

• So:
• Obtain performance from striping
• Obtain reliability from redundancy

11

RAID

• RAID: Redundant Array of Inexpensive Disks

• Disks are small and cheap, so it’s easy to put lots of disks (10s, say) in
one box for increased storage, performance, and availability

• Data plus some redundant information is striped across the disks in
some way

• How striping is done is key to performance and reliability

RAID Implementation

• Option A: hardware
• The hardware RAID controller deals with this

• From the OS’s perspective, the multi-disk RAID looks like one big array of blocks

• Option 2: software
• A low level layer of the OS knows there are multiple disks, but presents

them to upper layers as a single block device
• That is, it does what the hw RAID controller does

• It doesn’t matter to what follows which approach is used

13

Some RAID tradeoffs

• Granularity
• fine-grained: stripe each file over all disks

• high throughput for the file
• limits transfer to 1 file at a time

• coarse-grained: stripe each file over only a few disks
• limits throughput for 1 file
• allows concurrent access to multiple files

• Redundancy
• uniformly distribute redundancy information on disks

• avoids load-balancing problems
• concentrate redundancy information on a small number of disks

• partition the disks into data disks and redundancy disks

14

RAID Level 0: Non-Redundant Striping

• RAID Level 0 is a non-redundant disk array
• Files/blocks are striped across disks, no redundant info
• High (single-file) read throughput
• Best write throughput (no redundant info to write)
• Maximum use of disk capacity
• Any disk failure results in data loss

data disks

RAID Level 1: Mirrored Disks

• Files are striped across half the disks, and mirrored to the other half
• 2x space expansion

• Reads: Read from either copy
• read time is fastest read among copies

• Writes: Write both copies
• write time is slowest write among copies

• On single drive failure, just use the surviving disk during repair
• If two disks fail, you rely on luck…

data disks mirror copies

identical identical

17

Prelude to RAID Levels 2-5: A parity refresher

• To each byte, add a bit whose value is set so that the total number
of 1’s is even

• Can detect any odd number of bit errors
• If an odd number of bits have their values flipped, the overall parity won’t

be even, so you’ll know something is wrong

• Can correct a single error in which a bit “goes missing”
• (next slide)

• More sophisticated schemes, called ECC (error correcting codes),
can correct multiple bit errors at the cost of requiring more “extra
bits”

1 0 1 1 0 1 1 0 1

RAID Levels 2, 3,a and 4: Striping + Parity Disk

• RAID levels 2, 3, and 4 use parity or ECC disks
• e.g., each byte on the parity disk is a parity function of the corresponding

bytes on all the other disks
• details between the different levels have to do with kind of ECC used, and

whether it is bit-level, byte-level, or block-level

• A read accesses all the data disks
• A write accesses all the data disks plus the parity disk

• To recover from a single disk failure, read the remaining disks (including
the parity) disk to compute the missing data

data disks parity disk

RAID Level 5

• RAID Level 5 uses block interleaved distributed parity
• Like parity scheme, but distribute the parity info (as well as data)

over all disks
• for each block, one disk holds the parity, and the other disks hold the data

• Significantly better performance
• every write of a block must modify the corresponding parity block

• new parity block = (old data block) ^ (new data block) ^ (block parity block)
• parity disk is not a hot spot

0 1 2 3 PO

5 6 7 P1 4

10 11 P2 8 9

data & parity drives

File Block
Numbers

20

RAID Level 6

• Basically like RAID 5 but with replicated parity blocks so that it can
survive two disk failures.

• Useful for larger disk arrays where multiple failures are more likely.

RAID Summary
• Why use multiple disks (vs. one bigger disk)?

• What kinds of errors is RAID designed to protect against?

• If you have RAID, do you need journaling?

• If you have RAID, is a log structured file system of any use?

• If you have RAID, do you need file system backups?

• Is there any realistic situation in which you might lose “too many” disks at
once?
• For example, all of them?

