CSE 451: Operating Systems
Autumn 2020

Module 13

Redundant Arrays of Inexpensive Disks
(RAID)

John Zahorjan

* We start with very static formatting
» Superblock/inode/free block map locations are absolute positions on disk

e 1 disk = 1 file system

Y
~

/

letc

/etc/passwd

Y
~

Disk 1
(C drive)

* One file system = one disk was too rigid

* Could have only one file system
* One blocksize, for instance

* Backups are often done on a file system, so schedule for most important and least
important data would be the same

* This is a logical backup — a backup of the ADT that is the file system
* Disk backups (copying the disk at the block level) involved the entire disk

=)

v

One device, two partitions

Partitions

GUID Partition Table Scheme

LBA O Protective MBR
LBA 1 Primary GPT Header k=
LBA 2 Entry 1|Entry 2 |Entry 3|Entry 4 i
:
Entries 5-128 Z
LBA 33 \ \ o
LBA 34
Partition 1
Partition 2

\ Remaining Partitions

N\

LBA —34
____________________ -
LBA —33 Entry 1(Entry 2 (Entry 3 |Entry 4 %
4
AN Entries 5-128 s
LBA -2 &
____________________ o
LBA -1 Secondary GPT Header E

Offset

0 (0x00)

16 (0x10)
32 (0x20)
40 (0x28)

48 (0x30)

56 (0x38)

GUID partition entry format

Length
16 bytes
16 bytes
8 bytes
8 bytes
8 bytes
72 bytes

Contents
Partition type GUID (mixed endian(®)
Unique partition GUID (mixed endian)
First LBA (little endian)
Last LBA (inclusive, usually odd)
Attribute flags (e.g. bit 60 denotes read-only)
Partition name (36 UTF-16LE code units)

* There is a single tree of names
 So there is a single root, “/”
* (Contrast with Windows, which has a forest: C:\, D:\, ...)

* Use “mount” to extend file system namespace to span multiple
devices (or partitions)

* S mount /dev/sda2 /home

..

N ~_
! /
Jetc /home
/iz
/etc/passwd ¥/

Disks or partitions

Configuration file for use during boot

/etc/fstab

Created by anaconda on Wed Sep 14 17:35:23 2016

#

Accessible filesystems, by reference, are maintained under '/dev/disk'

See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info

#

UUID=8e3edd2f-eb93-4876-9d76-a%92%a5ac6fd9 / zfs rw, nodev
UUID=d3b5cedl-a961-40a8-8585-acf3a2676949 /boot ext4 rw,nosuid, nodev
UUID=82f54c67-e64c-444f-8296-4961b20e283e /tmp zfs rw,nosuid, nodev
UUID=8b1dc520-3a63-4c48-9bd4-871894cf9cdb /var zfs rw,nosuid, nodev

UUID=2b2fd4ea-0c2e-4e3e-a4c0-8a7ce31e0347 swap swap defaults

O O O+ O
O O O N O

* Redundant Array of Inexpensive Disks
» “Disks are cheap” means bytes are cheap

* Bytes are cheap means you can afford to waste them if it helps you

achieve other goals

* What goals are there, besides capacity?

* Performance

Y
~

/

Jetc /home

/etc/passwd

N
~_

* How is “peak performance” affected?

~_ A

/iz

bigdata.db

Y
~

* Are read times cut in half? Is write throughput doubled?

e Can we do better?

bigdatg.db blgdata.db

* If we locate data of individual files on multiple devices, we can
improve read/write peak performance even for individual files

* This is called

individual files across multiple disks

* we can use parallel I/0O to improve access time even when overall I/0
demand is bursty/low

* but...

* 10 disks have about 1/10th the MTBF (mean time between failures) of one
disk, and...

* if files are striped, any single disk failure causes loss of every file

10

* The issue: disk failure
* not software failure (it’s not journaling/crash tolerance)
* not user error (it’s not backup)

* To achieve reliability, add that allows a disk failure to be
tolerated

 We'll see how in a minute

» At the scales we’re currently considering (tens of disks), it’s typically enough
to be resilient to the failure of a single disk

* What are the chances that a second disk will fail before you’ve replaced the first
one’?
* Er, it has happened to us!

* So:
* Obtain from
* Obtain from

11

* Disks are small and cheap, so it’s easy to put lots of disks (10s, say) in
one box for increased storage, performance, and availability

 Data plus some redundant information is striped across the disks in
some way

* How striping is done is key to performance and reliability

e Option A: hardware

* The hardware RAID controller deals with this
* From the OS’s perspective, the multi-disk RAID looks like one big array of blocks

e Option 2: software

* Alow level layer of the OS knows there are multiple disks, but presents
them to upper layers as a single block device

* Thatis, it does what the hw RAID controller does

* It doesn’t matter to what follows which approach is used

13

fine-grained: stripe each file over all disks
* high throughput for the file
* limits transfer to 1 file at a time

coarse-grained: stripe each file over only a few disks
* limits throughput for 1 file
* allows concurrent access to multiple files

uniformly distribute redundancy information on disks
* avoids load-balancing problems

concentrate redundancy information on a small number of disks
 partition the disks into data disks and redundancy disks

14

* RAID Level 0 is a non-redundant disk array

* Files/blocks are striped across disks, no redundant info
* High (single-file) read throughput

» Best write throughput (no redundant info to write)

* Maximum use of disk capacity

* Any disk failure results in data loss

data disks

* Files are striped across half the disks, and mirrored to the other half
* 2X space expansion

* Reads: Read from either copy
* read time is fastest read among copies

* Writes: Write both copies
* write time is slowest write among copies

* On single drive failure, just use the surviving disk during repair
* If two disks fail, you rely on luck...

data disks mirror copies

identical identical

10110110.

* To each byte, add a bit whose value is set so that the total number
of 1’s is even

* Can any odd number of bit errors
* If an odd number of bits have their values flipped, the overall parity won’t
be even, so you’ll know something is wrong
* Can a single error in which a
* (next slide)

* More sophisticated schemes, called ECC (error correcting codes),
can multiple bit errors at the cost of requiring more “extra
bits”

17

* RAID levels 2, 3, and 4 use parity or ECC disks

* e.g., each byte on the parity disk is a parity function of the corresponding
bytes on all the other disks

» details between the different levels have to do with kind of ECC used, and
whether it is bit-level, byte-level, or block-level

* A read accesses all the data disks

* A write accesses all the data disks plus the parity disk

, read the remaining disks (including
the parity) disk to compute the missing data

data disks parity disk

e RAID Level 5 uses

e Like parity scheme, but distribute the parity info (as well as data)
over all disks

* for each block, one disk holds the parity, and the other disks hold the data

data & parity drives

Y Y Y Y
L N S N

0 1 2 3 PO
File Block
5 6 7 P1 4 Numbers
10 1 P2 8 9

O O i i
. N S N,

* Significantly better performance

* every write of a block must modify the corresponding parity block
* new parity block = (old data block) » (new data block) * (block parity block)

* Basically like RAID 5 but with replicated parity blocks so that it can
survive two disk failures.

» Useful for larger disk arrays where multiple failures are more likely.

20

Why use multiple disks (vs. one bigger disk)?

What kinds of errors is RAID designed to protect against?

If you have RAID, do you need journaling?

If you have RAID, is a log structured file system of any use?

If you have RAID, do you need file system backups?

Is there any realistic situation in which you might lose “too many” disks at

once?
* For example, all of them?

