
CSE 451: Operating Systems

Autumn 2020

Module 9

Storage Systems

John Zahorjan

Main Points

• File systems
• Useful storage abstractions on top of physical devices

Optimize the Common Case

• Storage hardware characteristics
• Disks and flash memory

• File system usage patterns

File Systems

• Abstraction on top of persistent storage
• Magnetic (spinning) disk
• SSD (Solid State Disk)
• Flash drives (i.e., easily portable)

• Hardware devices provide
• Storage that (usually) survives across machine crashes
• Block level (random) access
• Large capacity at low cost

• relative to RAM
• Relatively slow performance

• Magnetic disk read takes 10-20M processor instructions

File System as Illusionist:
Hide Limitations of Physical Storage

• Persistence of (coherent) data
• Even if machine is turned off
• Even if crash happens during an update
• Even if disk block becomes corrupted
• Even if flash memory wears out
• Even if building burns down
• Even if an earthquake eradicates a large geographic area

• Naming
• Named data, instead of disk block numbers
• Hierarchical names, instead of flat names
• Directories, instead of flat storage
• Byte addressable data, even though devices are block-oriented

• Performance
• The fastest IO op is the one you don’t have to do

• Caching
• Data placement and data structure organization

• Controlled access to shared data

File System Abstraction
• File system

• Persistent, named data
• Hierarchical organization (directories, subdirectories)
• Access control on data
• Not a database server
• Not a web server

• File
• Named collection of data
• Linear sequence of bytes (or a set of sequences)
• Metadata (e.g., owner, permissions, last modification date, …)
• Read/write interface or memory mapped

• Crash and storage error tolerance
• Operating system crashes (and disk errors) leave file system in a valid state
• Some individual files may not be so lucky...

• Performance
• Achieve close to the hardware limit in the average case
• (Achieve better than the hardware limit in the average case)

Storage Devices
• Magnetic disks

• Storage that rarely becomes corrupted
• Large capacity at low cost
• Block level random access
• Slow performance for random access
• Better performance for streaming (sequential on physical device) access

• Solid state disk
• Storage that rarely becomes corrupted
• Capacity at intermediate cost (3x disk)
• Lower power consumption (especially when idle)
• Block level random access
• Much better performance than spinning drives

• Good performance for reads; not as good for random writes

Magnetic (Spinning) Disk

Storage and firmware

Spinning Disk Tracks

• ~ 1 micron wide
• Wavelength of light is ~ 0.5 micron
• Resolution of human eye: 50 microns
• 100K tracks on a typical 2.5” disk

• Separated by unused guard regions
• Reduces likelihood neighboring tracks are corrupted during writes (still a small

non-zero chance)

• Track length varies across disk
• Outside: More sectors per track, higher bandwidth
• Disk is organized into regions of tracks with same # of sectors/track
• Only outer half of radius is used

• Most of the disk area in the outer regions of the disk

Sectors

Sectors contain sophisticated error correcting codes
• Disk head magnet has a field wider than track
• Hide corruptions due to neighboring track writes

• “Sector sparing”
• Cheaper/faster disk that mostly works plus mechanism to deal with errors

• Why make it perfect when I can make it 99% perfect for 80% of the cost and then masks
errors in software?

• Remap bad sectors transparently to spare sectors on the same surface

• Slip sparing
• Remap all sectors (when there is a bad sector) to preserve sequential

performance

• Track skewing
• Sector numbers offset from one track to the next, to allow for disk head

movement for sequential ops

Disk Performance

Latency = time from start of operation to completion of operation

Spinning Disk Latency = Seek Time + Rotation Time + Transfer Time

Seek Time: time to move disk arm over track (1-20ms)
Fine-grained position adjustment necessary for head to “settle”
Head switch time ~ track switch time (on modern disks)

Rotation Time: time to wait for disk to rotate under disk head
Disk rotation: 4 – 15ms (depending on speed/price of disk)
“On average”, need to wait only half a rotation

Transfer Time: time to transfer data onto/off the disk
Disk head transfer rate: 50-100MB/s (5-10 usec/sector)
Host transfer rate dependent on I/O connector (USB, SATA, …)

Seagate Barracuda 2.5” Disk (2019)

Capacity 1TB

Bytes per Sector (logical/physical) 512/4096

Interface SATA 6Gb/s

Data Transfer Rate Up to 160 MB/sec

Cache 128 MB

Rotation speed 7200 RPM

Nonrecoverable read errors per bits read,
Max

1 per 10E14

Startup current (+5V, A) 1.0

R/W Power, Average (W) 1.9/1.7

Idle Power, Average (W) 0.7

Spinning Disk Performance: Random / FIFO

• Q: How long to complete 500 random disk reads in FIFO order?
• Seek: average (assumed) 10.5 msec
• Rotation: average 4.15 msec
• Transfer: 5-10 usec

• A: 500 * (10.5 + 4.15 + 0.01)/1000 = 7.3 seconds

Spinning Disk Performance: Sequential

• Q: How long to complete 500 sequential disk reads?
• Seek Time: 10.5 ms (to reach first sector)
• Rotation Time: 4.15 ms (to reach first sector)
• Transfer Time:

(500 sectors) * (512 bytes / sector) / (128MB/sec) = 2ms

• Total: 10.5 + 4.15 + 2 = 16.7 ms
Might need an extra head or track switch (+1ms)
Track buffer may allow some sectors to be read off disk out of order (-2ms)

Spinning Disk Scheduling

• What does “disk scheduling” mean?
• The order in which disk I/O requests are served

• Why does it matter?
• Seek and latency depend on location of I/O op data relative to R/W head

• How much can it matter?
• See the previous slides!

• Who does it?
• Could be OS
• Could be the device itself

• SATA native command queueing

Spinning Disk Scheduling

• FIFO
• Schedule disk operations in order they arrive
• Downsides?
• Upside(s)?

Spinning Disk Scheduling

• FIFO
• Schedule disk operations in order they arrive
• Downsides?
• Upside(s)?

• SSTF (Shortest seek time first)
• Not optimal!

• (That it’s not optimal might seem counter-intuitive if we had done CPU scheduling
already, but we postponed that to get to disks, because of the project)

• Suppose one request toward outer edge and a “ladder” of requests toward inner
request with each next one always closer than the outer edge request

• Besides not being optimal, other downsides?

Spinning Disk Scheduling

• SCAN: move disk arm in one
direction, until all requests
satisfied, then reverse direction

• Also called “elevator scheduling”

Con: discriminates against
blocks at inner and outer edges

Spinning Disk Scheduling

• CSCAN: move disk arm in one
direction, until all requests
satisfied, then start again
from farthest request

Con: long seek in every
schedule; considers only seek

Spinning Disk Scheduling

• R-CSCAN: CSCAN but take
into account that short track
switch is < rotational delay

Spinning Disk Questions

• How long to complete 500 random disk reads in a well chosen order?
• Disk seek: 1ms (most will be short)
• Rotation: 4.15ms
• Transfer: 5-10usec

• Total: 500 * (1 + 4.15 + 0.01) = 2.2 seconds
• Would be a bit shorter with R-CSCAN
• vs. 7.3 seconds if FIFO order

• Why would reads be “random”?

• How could you try to reduce the likelihood that they were random?
• Who is “you”?

Spinning Disk Questions

• How long to read all of the bytes off a disk?
• Disk capacity: 1TB
• Disk bandwidth: 54-128MB/s

• Transfer time =
Disk capacity / average disk bandwidth
~ 10,500 seconds (3 hours)

Solid State Disks (SSDs) – Flash Memory

• No moving parts
• No seek time, no latency time, no influence on transfer rate due to limited

rotation speed
• (That last one was a bit misleading. Why?)

• More “penalty-free random access” than spinning disks

• Less “penalty-free random access” than main memory

Seagate Firecuda M.2 Disk (2019)

Capacity 1TB

Interface PCIe Gen4 x4, NVMe 1.3

NAND Flash Memory 3D TLC

Sequential Read (Max), 128KB 5000 MB/s

Sequential Write (Max), 128KB 4400 MB/s

Random Read (Max, QD32) 760,000 IOPS

Random Write (Max, QD32) 700,000 IOPS

Active Power, Average 5.6 W

Idle Power, Average 15 mW

Lower Power mode 2 mW

Total Bytes Written (before failure) 1800 TB

Flash Memory
(SSD performance is increasing quickly, so distrust the specific values here!)

• Read/write pages (2-4KB)
• 50-100 usec

• Must erase a page that has already been written to before writing it again
• no update in place
• must erase first, then write

• Erasure is performed only on large erasure blocks
• Erasure block: 128 – 512 KB
• Many pages

• Erasure is slow
• Several milliseconds

• When you want to update a logical page, must move it

Flash Translation Layer

• Support for moving pages is provided by the disk device
• It’s software (ok, firmware), but it runs on the disk, not in the OS on the CPU

• Disk firmware maps logical page # (used by OS) to a physical location
• The device presents a name space, page numbers, for the OS to use, but they

are not physical addresses on the device

• Transparent to the device user (i.e., the OS)
• What’s great about that?!
• What’s not great about that?!

(Spinning disks map as well)

Flash Translation Layer: Garbage Collection
• Improve performance by garbage collecting pages and cleaning

blocks
• Pack in-use pages into (full) erasure blocks

• Creates erasure blocks with no in-use pages as a result
• Pre-clean (erase) those now empty blocks
• More efficient if pages stored at same time are deleted at same time (e.g.,

keep blocks of a file together)

• Who’s doing this, the disk or the OS?

File System – SSD

• How does SSD device know which pages are live?
• To the device, pages are just pages

• “In use” is a logical idea

• Only the file system knows which pages are in use
• When a file is deleted, there is no disk operation on its data blocks

• But the device is doing erasures, and must understand which blocks
are live to do so efficiently

• TRIM command
• File system tells device when blocks are no longer in use

Flash Translation Layer: Wear Leveling

• Each physical page on an SSD can be written only a limited number of
times before it becomes unreliable

• Wear-levelling
• Remap pages to spread wear evenly
• Unmap pages that no longer work (like sector sparing)

• including pages that never worked

Storage Technology Comparison

• SDD has interface identical to HDD
• SATA bus

• NVMe device has internals like SDD but incompatible physical interface
• faster...

HDD vs. SDD IOPS and Transfer Size

https://www.enterprisestorageforum.com/storage-hardware/ssd-vs-hdd-speed.html

Storage Performance Summary

• Yes, newer is faster

• If you make some component fast enough, some other component
becomes the bottleneck

• Large, sequential transfers are advantageous on all device technologies
• On spinning disks, amortize seek and latency overheads
• On SSDs, for reasons explained in a moment

File System Workloads

• A file system decides how to use disk storage to maintain information
about:

• file contents (data)
• file names (and other meta-data)
• directories

• One goal of the file system is performance
• Remember “optimize the common case”

• What is the common case?
• If we knew, it might help us design an efficient file system

File System Decisions and Workloads

• Big blocks or little blocks?
• Fragmentation
• Amount of indexing information needed to list blocks in a file

• Which blocks on same track, which on different?
(Which blocks in a single erasure block?)

• File block indexing structures?
• Access time vs. space overhead

• Optimize for reading or for writing?

File System Workload

• File sizes (static measure)
• Are most files small or large?
• Which accounts for more total storage: small or large files?

File System Workload

• File sizes
• Are most files small or large?

• SMALL
• Which accounts for more total storage: small or large files?

• LARGE

File System Workload

• File access (dynamic measure)
• Are most IO operations on small files or large ones?

• Counts IO ops
• Which accounts for more total I/O bytes: small or large files?

• Counts bytes transferred

File System Workload

• File access
• Are most IO operations on small files or large ones?

• SMALL
• Which accounts for more total I/O bytes: small or large files?

• LARGE

File System Workload

• How are files used?
• Most files are read/written sequentially
• Some files are read/written randomly

• Ex: database files, swap files

• Some files have a known size at creation
• Some files start small and grow over time

• Ex: program stdout, system logs

File System Design
• For small files:

• Small blocks for storage efficiency
• minimize internal fragmentation

• Concurrent ops more efficient than sequential
• On spinning disk, files used together should be stored together

• For large files:
• Storage efficient (large blocks)
• Contiguous allocation for sequential access
• Efficient lookup for random access

• E.g., don’t use a linked list of blocks on disk!

• May not know at file creation
• Whether file will end up small or large
• Whether file is persistent or temporary
• Whether file will be used sequentially or randomly

File System Abstraction

• Path
• String that uniquely identifies file or directory
• Ex: /cse/www/education/courses/cse451/20sp

• Links
• Hard link: link from name to file metadata
• Soft link: link from one name to an alternate name

• Directory
• Group of named files, including subdirectories
• Maps from file name to file metadata location

• inode number, in xk (and many other systems)

• Mount
• Mapping from name in one file system to root of another

Mount / “File System”
• Want storage to be self-describing

In memory version of namespace

UNIX File System API

• create, link, unlink, createdir, rmdir
• Create file, link to file, remove link
• Create directory, remove directory

• open, close, read, write, seek
• Open/close a file for reading/writing
• Seek resets current position

• fsync
• File modifications can be cached in memory
• fsync forces modifications to disk (like a memory barrier)
• Note: modifications include updated metadata

File System Interface

• UNIX file open is a Swiss Army knife:
• Open the file, return file descriptor
• Options:

• if file doesn’t exist, return an error
• If file doesn’t exist, create file and open it
• If file does exist, return an error
• If file does exist, open file
• If file exists but isn’t empty, nix it then open
• If file exists but isn’t empty, return an error
• …

Interface Design Question

• Why not provide separate syscalls for open/create/exists?
• Would be more modular!

if (!exists(name))
create(name); // can create fail?

fd = open(name); // does the file exist?

Summary

• Storage systems provide persistent storage
• File systems abstract persistent storage to make it easier to use
• Like all system software, file systems strive to achieve convenient

functionality while allowing performance close to what could be
achieved implementing on top of raw hardware

• “Optimize the common case” requires that we know what the
common case is

• “Optimize the common case” requires that we know relative cost of
operations on the hardware device

