
CSE 451: Operating Systems

Autumn 2020

Module 7.5

Midterm Review

John Zahorjan

Mechanics
• Midterm is Monday, 11/9
• It will be a Canvas quiz
• You’ll have 50 minutes to complete it once you start
• It will be available between 9:00 am PDT and 9:00 pm PDT

• If you have questions while taking it, please email cse451-staff@cs
• Do not post to the discussion board

• I will try to answer questions during the entire period the midterm is
available

• I will be doing nothing else except waiting for questions between
11:00 am PDT and 1:00 pm PDT

• Some questions and answers may be posted by us to the discussion
board

Material Covered

• Class material through today
• Slide sets 1 (Introduction) through 7 (Synchronization (cont.))

• Labs 1 and 2
• Have you been doing them?

• HW0 as a bonus question

Format / Resources

• Mix of multiple choice and short answer

• You can use any resource available to you except other people
• Don’t convey anything related to the midterm to anyone from 9:00 to 9:00

Monday, including stackoverflow and the like

• The goal is to have many, relatively simple problems
• Simple enough that you can use what you know to answer them all within 50

minutes
• Enough of them that looking up answers during the exam won’t have a good

result

Slide Set 1: Introduction

• What are the roles of the OS?

• What does it mean to share the resources of the computer?
• Who are they shared among?
• When does the OS itself get a chance to run?

• What is “required” to share the resources?
• Why is isolation important? Could you build an OS that didn’t provide it?

Would such a system be useful? Would there be any advantage to such a
system?

• What mechanisms does the OS provide/use to isolate
• Memory
• CPU
• Disk

Thematic Issues: Policy vs. Mechanism and
Deferring Policy

• What mechanisms does the hardware provide?
• What policies does it enforce?
• Deferring policy to higher levels is the essence of computing hardware

• Does the hardware do anything without software?

• Which mechanisms are oriented to/vital to implementing the OS?

• What are example abstractions built by the OS upon these
mechanisms?

• One is “the OS” itself…

• The OS as an enabler
• Simplify implementation of applications vs. efficiency of applications

• Code time vs. run time efficiency
• Portability as a code time consideration

Themes

• What does it mean for the OS to be efficient?
• (Logical) operations can happen at very different timescales on

computers. What approaches can be applied to deal with very slow
ones (long latency)?

• Policy/mechanism distinction and the idea of deferring policy
• Interposition as a way to evolve
• Naming
• Synchronization

• Concurrency vs. parallelism

Slide Set 2: Architectural Support
• What is the basic control flow of the system?
• Why do transitions from user code to the OS take place?
• Since they run on the same CPU, why can’t applications do everything the

OS can do?
• What happens on a transition from user code into the OS?
• On a transition from the OS to user code?
• What mechanisms does the hardware provide to help the OS keep control of

the system?
• When the OS is running, what stack is it using (in xk)?
• How does xk use the segmented memory system provided by x86_64?
• How is memory protected?
• How are IO devices protected?
• What is an argument against protection?

Slide Set 3: OS Components and Structure

• Why is “components and structure” a topic?
• Why isn’t there a clear answer?

• How does OS structure help or hinder portability of the OS?
• How does OS structure help or hinder debugging of the OS?
• How does OS structure help or hinder extensibility of the OS?
• How does OS structure help or hinder run time performance of the

OS?
• What are some example OS structures?

Slide Set 3: OS Components and Structure

• Processes / threads
• Why have a process abstraction?
• Distinction between a process and a thread?
• Running / runnable / blocked states

• Memory management
• Virtual address spaces (cse 351)

• I/O devices
• How is innovation (extensibility) supported?
• I/O device vs. file system

• Shells / Windowing / Networking

• Virtual machines

Slide Set 4: Processes

• Why have an abstraction like “process”?
• Memory layout of address space

• What’s special about a stack?

• Process control blocks and runtime state of process
• Running / runnable / blocked (single threaded process…) / zombie
• Process metadata
• Contents of address space plus CPU state (registers)

• Context switching
• The basis for sharing
• What is the mechanism?
• How is it different than procedure call?

• How is it the same?

Process Creation
• fork()/exec(path-to-executable, args) vs. createprocess(path-to-

executable, …, args)
• Relationship of fork to

$./myprogram >output.txt
• Relationship of fork to

$ cat myfile.txt | grep Due | wc

• vfork() and copy-on-write fork

• Communicating “arguments” to subprocesses
• Inherited meta-data
• Meta-data modified by parent code running in new process
• Explicit args
• Inherited Environment

Process
Communication/Synchronization/Abstraction

• wait()
• signals (kill())
• Other: generic

• Files
• Pipes
• Named pipes

• Other: workarounds
• setuid executables

• Compare/contrast with trap mechanism for entering kernel

• Process abstraction
• Session abstraction
• Process group abstraction

Slide Set 5: Threads
• Thread vs. process
• Why do we want threads?
• (Concurrency vs. parallelism)

• Why does each thread have its own stack?
• (What’s special about stack memory?)
• Is stack memory thread private?

• The key idea to a thread is a control flow
• Has a stack
• Can be paused and resumed simply by saving and restoring its CPU context

Kernel threads vs. User Level threads
• Saving and restoring registers is NOT privileged
• Allocating cores to threads IS privileged

• Can create a thread (control flow) abstraction at user level, including
context switching among threads

• The kernel allocates a core to a kernel thread
• When the OS is entered on that core, it can determine what kernel thread it

was running and save registers in structure for that kernel thread

• Each kernel thread created by a user-level thread package is an
opportunity for the application to be allocated a core

• Kernel can’t allocate more cores to app than it has kernel threads
• It can allocate fewer…

Scheduler Activations
• An application may create many user-level threads (using a user-level thread

package that knows how to create/save state/ restore state/terminate them)
• If application code executes a blocking system call (e.g., read)

• The OS is entered, because it’s a system call
• The OS saves registers in a structure associated with the kernel thread that the OS

last allocated that core to
• The app has just lost a core, so it needs a chance to decide if the set of threads it

is running on the cores it still has is the best choice

• Conversely, if the OS allocates an additional core and restores the state of a
kernel thread running in that app, the app gains a core

• The user-level thread package should get a chance to decide what thread should
run on that core

• Scheduler activations are a way for the OS to send “an upcall” to the user-
level thread package when the number of cores allocated to it changes

Slide Set 6: Synchronization

• A correct concurrent program must be correct for every possible
physical execution

• What are the possible physical executions?
• Constrained by ordering semantics within a single control flow
• Constrained by synchronization operations between control flows

• Critical sections
• Correct execution if executed in a non-overlapping way

• Possible incorrectly if distinct executions overlap or interleave
• Read-modify-write of a shared variable
• Need mutual exclusion
• A lock is a synchronization variable that provides mutual exclusion

Locks
• acquire()/release() (or lock()/unlock())
• Semantics vs. implementation
• Implementations

• Spinlocks
• Mutexes (blocking locks)

• Use spinlocks when the expected spin time is reliably short
• Use blocking locks otherwise

• Use spinlocks to implement blocking locks
• A spin lock is used to guard access to the structure that represents the mutex

• The lock state and a queue of waiting threads
• The guarding spinlock is held until either the lock state is changed to locked

or the thread has enqueued itself on the wait list

Implementing spinlocks
• Acquire(): Need to read current lock state and set it to locked if it’s

unlocked
• That’s a read-modify-write, so it’s a critical section
• Can’t resolve it using spinlocks because we’re trying to implement

spinlocks
• Need lower level (hardware) support

• Test-and-set: fetches contents of a memory location into a register
and writes 1 there

• Exchange: swaps a register and contents of a memory location

• Disabling interrupts?!

Slide Set 7: Synchronization (cont.)

• Blocking as a basic thread operation
• Note that user-level threads must block by using code in the user-level

thread library, and kernel threads must block using code in the kernel
• Because that’s the level at which the data structures tracking the states of the threads

live
• That means synchronization variable implementations must exist in kernel

code and in user-level code

• Yield’ing vs. sleep’ing vs. wait’ing (block’ing)
• Yield is “I can run, but I think my progress right now probably isn’t very

important so run some other thread if there any ready”
• Sleep is an abomination
• You block yourself; someone else wakes you up

Condition variables

• A blocking synchronization variable where the decision about when
to block is deferred to the application

• The application needs to (a) evaluate the blocking condition, and
then (b) block if necessary.

• For the result of (a) to mean anything at the time (b) is performed requires
mutual exclusion (i.e., a lock)

• The lock cannot be held while the thread is blocked, but…
• The lock cannot be released before the thread is blocked

• Condition variables solve this
• Atomically release the lock and block the thread
• Wait(cv, lock) and signal(cv) (and broadcast(cv))

Memory Consistency
• Memory consistency is how writes to memory by one core are seen by

others
• Programmers would like all cores to see writes in the order they occurred on

the core that wrote them
• Hardware would like the flexibility to push values to memory in a way that is

most efficient
• Programmers must reason statically; hardware would like to optimize dynamically

• Compromise:
• Hardware provides a “memory barrier” operation that flushes all writes to

memory before it finishes
• Infrastructure software implementer includes memory barriers in the

implementation of operations on synchronization variables
• Programmer respects that correct code must use synchronization variables to

achieve synchronization
• With that restriction, the code sees updates as to shared values as though they were

performed atomically

Guidelines for Multithreaded Programs

• Always use synchronization when accessing shared values
• Use locks and condition variables for synchronization
• Use the procedure as the unit of mutual exclusion

• Acquire lock at beginning, release at end

• Always wait() in a while loop
• If your code contains a call to sleep(), most likely you’re doing it

wrong

Midterm Monday

• Don’t stress!

• The final course grade will reflect what we think you have mastered
by the end of the course, so…

• If you do really well on the midterm, great!
• If your midterm result isn’t what you were hoping for, hey, the course

has a long way to go

• It is much harder to catch up than to keep up

