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Topics

• Readers/Writers Locks
• Class exercise...

• Performance: Multiprocessor cache coherence
• MCS locks

• Usual lock semantics
• Optimized for case that locks are mostly busy

• RCU locks
• Relaxed semantics (somewhat like readers/writers)
• Optimized for locks are mostly busy and data is mostly read-only



Module Roadmap
• Condition variables defer to the application all decisions (policy) about when to 

block…
• The app executes arbitrary code

• except that the condition variable assumes (insists) that nothing more 
complicated than a lock is needed to make the decision

• The remaining sync variables in this section impose policy
• R/W locks: any number of readers and no writers or one writer
• MCS locks: spinlocks with robust performance at high load
• RCU locks: efficient, loosely synchronized reads and infrequent, expensive 

writes

• Plus…
• Many locks (why?) and deadlock (how not?)



Readers/Writers Locks



Enabling Concurrency

• Imagine you’re creating a thread-safe implementation of some data 
structure

• The interface is read(key) and put(key, value)
• Each instance of the data structure contains a single mutex that is 

used to restrict concurrent operations

• Does put() need to obtain the mutex?
• Does read() need to obtain the mutex?



Enabling Concurrency

• Imagine you’re creating a thread-safe implementation of some data 
structure

• The interface is read(key) and put(key, value)
• Each instance of the data structure contains a single mutex that is 

used to restrict concurrent operations

• Does put() need to obtain the mutex?
• Does read() need to obtain the mutex?

• Usually the answer to both questions is “yes”



Readers/Writers Locks

• Mutex has semantics “one thread at a time”

• Suppose we want semantics 
any number of readers but no writers

OR
just one writer

• Readers/writers locks support this
• “lock for read” or “lock for write”

• Interface:  
• startRead() ... doneRead
• startWrite() ... doneWrite()



R/W Locks Implementation

• Take a few minutes and implement them
• In teams
• (Heaven help us...)

• The text advocates a “monitor style” programming discipline
• Implement an abstract data type as a class 
• Each instance contains a lock
• Every method acquires the lock as the first thing it does
• Every method releases the lock as the last thing it does
• What should your code do if it needs to wait?



Lousy Substitution for Class Exercise

This will be very vague, but will be filled in in subsequent slides…



Readers/Writers Locks

• Mutex has semantics “one thread at a time”

• Suppose we want semantics 
any number of readers but no writers

OR
just one writer

• Readers/writers locks support this
• “lock for read” or “lock for write”

• Interface:  
• startRead() ... doneRead
• startWrite() ... doneWrite()



Readers-Writers Locks

int numWriters = 0;
int numReaders = 0;

spinlock lock;

condVar writeWait;
condVar readWait;

Operations:
startRead() / endRead()
startWrite() / endWrite()

Why a spinlock? 
(Why not a mutex?)



R/W Locks Possible Implementation

void startRead() {
lock.lock();
while ( numWriters > 0 ) wait(readWaitCV, lock);
numReaders++;
lock.unlock();

}
void endRead() {

lock.lock();
if ( --numReaders == 0 ) signal(writeWaitCV);
lock.unlock();

}



R/W Locks Possible Implementation

void startWrite() {
lock.lock();
while ( numWriters > 0 || numReaders > 0 ) 

wait(writeWaitCV, lock);
numWriters = 1;
lock.unlock();

}
void endWrite() {

lock.lock();
numWriters = 0;
broadcast(readWaitCV);
signal(writeWaitCV);
lock.unlock();

}



R/W Lock Implementation

• What’s good about my implementation?
• It works!

• What’s bad about my implementation?
• “starvation”

• What alternative semantics might you want?

• How would you know what you want?

broadcast(readWaitCV);
signal(writeWaitCV);



Module Roadmap
• Condition variables defer to the application all decisions (policy) about when to 

block…
• The app executes arbitrary code

• except that the condition variable assumes (insists) that nothing more 
complicated than a lock is needed to make the decision

• The remaining sync variables in this section impose policy
• R/W locks: any number of readers and no writers or one writer
• MCS locks: spinlocks with robust performance at high load
• RCU locks: efficient, loosely synchronized reads and infrequent, expensive 

writes

• Plus…
• Many locks (why?) and deadlock (how not?)



Synchronization Performance: Cache Effects



Multi-threaded/core Performance
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Parallel, numerical application.  N reflects size of data (granularity).



Synchronization Performance 

• A program with lots of concurrent threads can still have poor performance 

on a multiprocessor:

• Overhead of creating threads, if not needed

• Lock contention: only one thread at a time can hold a given lock

• Shared data protected by a lock may ping back and forth between cores

• False sharing: communication between cores even for data that is not shared (but 

resides in same cache line)



Multicore Caching
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Performance: Multiprocessor Cache 
Coherence
• (Cache) Coherence vs. (Memory) Consistency

• Consistency: view of values in multiple locations across cores 
• last module (memory barriers)

• Coherence: view of a single location’s value across cores
• this module

• Scenario:
• Thread A modifies data inside a critical section and releases lock
• Thread B acquires lock and reads data

• Easy if all accesses go to main memory
• Thread A changes main memory; thread B reads it

• With caching
• What if new data is cached at processor A?
• What if old data is cached at processor B



Write Back Cache Coherence

• Cache coherence = system behaves as if there is one copy of the data
• If data is only being read, any number of caches can have a copy
• If data is being modified, at most one cached copy

• On write: (get ownership)
• Invalidate all cached copies, before doing write
• Modified data stays in cache (“write back”)

• On read:
• Fetch value from owner or from memory



Cache State Machine

Invalid

Exclusive (writable)

Shared (Read-only)
Read (miss)

Write (miss)

Peer write

Peer write

Peer read Write (hit)

This is one simple example of a possible state machine.

Read (hit)

Read (hit)
Write (hit)



Cache Coherence

• How do we know which cores have a location cached?
• Snooping – shared bus; all cores see transactions
• Directory Based

• Better scalability than snooping
• Hardware keeps track of all cached copies
• On a read miss, if held exclusive, fetch latest copy and invalidate that copy
• On a write miss, invalidate all copies

• Read-modify-write instructions
• Atomically fetch cache entry exclusive and update

• prevents any other cache from reading or writing the data until instruction completes



How Do Caches Affect Multi-thread Performance?

// A counter protected by a spinlock

Counter::Increment() {

while (test_and_set(&lock))  ; // spinlock acquire
value++;                                // increment

memory_barrier();                // push updated values

lock = FREE; // spinlock release
} 

Experiment with a trivial critical section:

This is a very fine-grained critical section

Class Counter {
int lock;
int value;

}



A Simple Test of Cache Effects

Array(s) of 1K counters, each protected by a separate 
spinlock

• Array small enough to fit in cache

• Test 1: one thread loops over array
• Test 2: two threads loop over different arrays
• Test 3: two threads loop over single array
• Test 4: two threads loop over alternate elements in 

single array



Results (64 core AMD Opteron)

One thread, one array 51 cycles

Two threads, two arrays 52 

Two threads, one array 197

Two threads, odd/even 127

Time to execute one Increment()

Note: not speedup, just time to execute critical section 



Lock Performance:
The Problem with Test-and-Set

Counter::Increment() {
while (test_and_set(&lock)); // this is a write!
value++;
memory_barrier();
lock = FREE; // so is this…

}

What happens if many processors try to acquire the lock at the 
same time?

• Threads trying to get lock acquire cache line ownership
• Hardware doesn’t prioritize FREE



Test-and-Test-and-Set

Counter::Increment() {
while (lock == BUSY || test_and_set(&lock)) ;
value++;
memory_barrier();
lock = FREE;

}

What happens if many processors try to acquire the lock?
• Lock value pings among caches



Test(-and-Test)-and-Set Performance



Some Possible Approaches

• Insert a delay in the spin loop 
• Helps but acquire is slow when not much contention

• Spin adaptively
• No delay if few waiting
• Longer delay if many waiting
• Guess number of waiters by how long you wait

• Reduce Lock Contention

• Build a better lock



Reducing Lock Contention

• Fine-grained locking
• Partition object into subsets, each protected by its own lock

• Example: hash table buckets
• vs. coarse-grained locking

• Per-processor data structures
• Partition object so that most/all accesses are made by one processor
• Example: per-processor heap

• Ownership/Staged architecture
• Mostly only one thread at a time accesses shared data
• Example: pipeline of threads



But what If Locks are Still Mostly Busy?

• MCS Locks (Mellor-Crummey and Scott)
• Memory system-aware, optimized lock implementation for when lock is 

contended

• RCU Locks (read-copy-update)
• Efficient readers/writers lock used in Linux kernel
• Readers never block
• Writer updates while readers operate (!), but at a cost…

• Both rely on atomic read-modify-write hardware instructions

Reminder:  Linux fastpath mutex implementation is an example of 
optimizing when the common case is locks are overwhelmingly idle



More Robust Lock Performance



MCS Locks



Background: Atomic CompareAndSwap
Instruction

• CompareAndSwap( memory address,  comparison value,  update value );

• Atomically:
if ( value at memory address == comparison value ) {

value at memory address = update value;
return true;

} 
else return false;

Obviously, CompareAndSwap can be used to implement test-and-set 
semantics, although it costs an extra register.  CompareAndSwap is more 

powerful, though, and MCS locks use the additional capability.



MCS Lock Object

• MCSLock maintains a list of threads waiting for the lock
• MCSLock::tail is reference to the last thread in list
• The lock is free if tail is NULL
• Otherwise, the lock is in use

• the thread at the head of the list holds the lock
• New thread uses CompareAndSwap to add to the tail

• Threads spin on their private needToWait flags

• Lock is handed off by the thread releasing the lock:
next->needToWait = FALSE;

// thread control block (per thread)
TCB {

TCB *next;                 // next in line
bool needToWait;   // per-thread flag 

}

MCSLock {
Queue *tail = NULL; // end of line

}



MCS In Operation

For this to work, must be able to do each required operation in one 
(atomic) CompareAndSwap instruction



MCS Lock Implementation
MCSLock::acquire() {

Queue oldTail = tail; 

myTCB−>next = NULL;
myTCB−>needToWait = TRUE;

while (!compareAndSwap(&tail, 

oldTail, &myTCB)) { 
oldTail = tail;

} 

if (oldTail != NULL) { 
oldTail−>next = myTCB;

memory_barrier(); 

while (myTCB−>needToWait)   ;
}

}

MCSLock::release() { 

if (!compareAndSwap(&tail, 

myTCB, NULL)) { 
while (myTCB−>next == NULL)  ;

myTCB−>next−>needToWait=FALSE;

}
}

race
Why is this fast?
• Under low lock contention
• At high lock contention

Spin on thread-specific location



More Robust Lock Performance



Read-Copy-Update Locks



Read-Copy-Update
• Goal: low latency reads to shared data 

• Reads proceed without first acquiring a lock
• It’s OK if we get this by making writes (very) slow

• Best use scenario:  writes are infrequent

• Writers: Restricted update
• Writer creates a new version (copy) of data structure 
• Publishes new version with a single atomic instruction

• Readers: Unimpeded by writes because writers never write a data structure that 
is being read

• This results in multiple concurrent versions
• Which means that readers may see an “old version” for a limited time

• When is it safe to clean up old version?
• Relies on integration with thread scheduler
• Guarantee all readers complete within grace period, and then garbage collect old 

version



Read-Copy-Update



RCU Lock Basic Idea

• Use an atomic update to install next version of data structure
• Reader sees either the last version or the new version, but never a mixture of the 

two

• Don’t know if any readers are still using an old version
• Problem:  can’t “clean up” old versions as part of publishing new  versions

• Solution:  version generation numbers
• Increment a generation number (counter) associated with data structure each 

time a new version is published
• Each thread advertises the highest version number it has seen
• So...  just wait until all threads are saying they’ve seen at least version N to clean 

up versions before N

• RCU Locks: do that, but on a processor basis rather than a thread basis
• Why not on a per-thread basis?



Read-Copy-Update Implementation

• Readers disable interrupts on entry
• Guarantees they complete critical section in a timely fashion
• Prevents scheduler from running on that core
• No need for a read or write lock

• Writers
• Acquire write lock

• One writer at a time
• Copy-Update

• Create new data structure
• Publish new version with atomic instruction
• Release write lock

• Wait for scheduler time slice on each CPU
• Only then, garbage collect old version of data structure



Writer Operation

WriteLock();             // only one writer at a time

<prepare updated data structure>

publish(updated data structure);  // make new version visible by CAS 
// pointer

WriteUnlock();       // allow another writer to start

synchronize();        // wait until all readers are at at least the version
//  you published

<free anything that needs freeing from the version you replaced>



RCU Lock Implementation

void ReadLock() { disableInterrupts(); }
void ReadUnlock() { enableInterrupts(); }

void WriteLock() { writerSpin.lock(); }
void WriteUnlock() { writerSpin.unlock(); }

void publish( void **ppHead, void *pNew) {
memory_barrier();
*ppHead = pNew;   // atomic assignment needed...
memory_barrier();

}



RCU Lock Implementation
// called after each modification (after releasing write lock)
void synchronize() {

c = atomicIncrement(globalCounter);
for (p=0; p<NUM_CORES; p++ )

while (PER_PROC_VAR(quiescentCount,p) < c)
sleep(10);      // about a scheduling quantum

}
// called by scheduler  (if scheduler is running, there is no reader running or 

// suspended on that processor)
void QuiescentState() {

memory_barrier();
PER_PROC_VAR(quiescentCount) = globalCounter;
memory_barrier();

}



RCU Lock Question

• We  require that the new version of the update be published with a 
single, atomic instruction, so…

• Why do we need a write lock?
• Why not just produce the updated data structure without a lock and then 

install it using the atomic instruction?



Deadlock



Deadlock: Classic Example

Deadlock:  circular waiting for resources

Deadlock is about the dynamic state of the computation
• The execution may deadlock (more likely than it will deadlock)

Static solution Dynamic solution



Computer Science and Life



Deadlock Terminology
• Deadlock

• circular waiting for resources

• Resource: any (passive) thing needed by a thread to do its job (CPU, disk space, 

memory, lock, another thread’s progress)

• Preemptable: can be taken away (by OS)

• Releasable: can be given up by thread

• Non-preemptable: must leave with thread

• Starvation

• Although a thread can in theory make progress, in practice  it waits indefinitely

• Livelock

• failure to progress due to repeated conflicting actions taken by multiple threads



[Livelock]

https://www.today.com/health/sidewalk-dance-when-pedestrians-keep-stepping-way-t137227



Deadlock Example with Two Locks

Thread A

lock1.acquire();
lock2.acquire();
lock2.release();
lock1.release();

Thread B

lock2.acquire();
lock1.acquire();
lock1.release();
lock2.release();



Bidirectional Bounded Buffer

Thread A

buffer1.put(data);
buffer1.put(data);

buffer2.get();
buffer2.get();

Thread B

buffer2.put(data);
buffer2.put(data);

buffer1.get();
buffer1.get();

Suppose buffer1 and buffer2 both start almost full.



Two locks and a condition variable

Thread A

lock1.acquire();
…
lock2.acquire();
while (need to wait) {

condition.wait(lock2);
}
lock2.release();
…
lock1.release();

Thread B

lock1.acquire();
…
lock2.acquire();
…
condition.signal(lock2);
…
lock2.release();
…
lock1.release();



Dining Lawyers

Lawyers alternate talking on their phones and eating.
Each lawyer needs two forks to eat. 
Each grabs fork on the right then fork on the left.
They’re lawyers…



Necessary Conditions for Deadlock

1. Limited access to resources

• If infinite resources, no deadlock!

2. No preemption

• If resources are preemptable, can break deadlock

3. Hold and Wait

• Threads don’t voluntarily give up resources

4. Circular chain of requests



Dealing with Deadlock



Preventing and Avoiding Deadlock

1. Prevent deadlock purely statically by exploiting or limiting program behavior to make 

sure at least one of the four conditions can’t ever hold

• Limit program from doing anything that might lead to deadlock – can never deadlock

2. Avoid deadlock by dynamically monitoring program state and steering clear of “bad 

states”

• Program can sometimes deadlock.  Detect when deadlock could develop and intervene.

• Requires knowing something about possible future thread behavior → some staƟc analysis

3. Detect and recover purely dynamically

• If we can rollback a thread’s changes to process state, we can fix a deadlock once it occurs

• (So, okay, the ability to rollback has to be provided statically…)



Exploit or Limit Behavior

• Provide enough resources

• How many forks are enough?

• Eliminate wait while holding

• Acquire all locks at once, or none

• Release lock when calling out of module

• Eliminate circular waiting

• Lock ordering: always acquire locks in a fixed order

• Example: move file from one directory to another



[Bonus Slide] Acquire All Locks At Once – C++

std::lock
template <class Mutex1, class Mutex2, class... Mutexes> void lock (Mutex1& a, Mutex2& b, Mutexes&... cde);
Lock multiple mutexes

Locks all the objects passed as arguments, blocking the calling thread if necessary.

The function locks the objects using an unspecified sequence of calls to their members lock, try_lock and unlock that 
ensures that all arguments are locked on return (without producing any deadlocks).

If the function cannot lock all objects (such as because one of its internal calls threw an exception), the function 
first unlocks all objects it successfully locked (if any) before failing.

From http://www.cplusplus.com/reference/mutex/lock/
See code sample there for clearer connection to deadlock issues.



Static Resource Ordering

• Thread shown holds some resources and is trying to acquire another 
one

• The one labelled 4

• What can happen?
• If 4 is free, no problem
• If 4 is busy, possible deadlock?

• Deadlock if whoever holds 4 wants or will want 1 or 2 (or transitively…)

0 1 2 3 4



Static Resource Ordering

• If 4 is held, and if the thread holding it (eventually) is blocked waiting 
for some resource, that resource must have index greater than 4

• Similarly, whoever is holding resource n can only wait on resources 
with indices greater than n

• So, not cycle of wait-for is possible

0 1 2 3 4 n



Traditional Dining Lawyers Solution

• Static rules are:
• All lawyers but one pick up right fork and then left fork
• One lawyer picks up left fork then right fork

• This is an example of resource ordering

0

7

6

54

3

2

1



Dynamic Monitoring Example

Thread 1

1. Acquire A

2. Acquire C

3. If (cond) Acquire B

Thread 2

1. Acquire B

2. Acquire A

How can we “pause” thread execution to  make sure to avoid deadlock?



Deadlock Dynamics

• Safe state:

• For any possible sequence of future resource requests, it is possible to 

eventually grant all requests (perhaps by delaying some requests)

• Unsafe state:

• Some sequence of resource requests can result in deadlock, even if you 

reserve all remaining resources for one chosen thread (in case it will want 

them)

• Doomed state:

• All possible computations lead to deadlock



Possible System States



Dining Lawyers

• What are the unsafe states?

• What are the safe states?

• What are the doomed states for Dining Lawyers?

• Note: In Dining Lawyers we know exactly what each thread will do.  
This dynamic approach to deadlock prevention is oriented toward 
situations where threads conditionally acquire resources

• “I need up to two forks (but sometimes I use just one fork and I’m done)”



Communal Dining Lawyers

• n forks in middle of table 

• n lawyers, each can take one fork at a time

• What are the safe states?

• What are the unsafe states?

• What are the doomed states?



Communal Mutant Dining Lawyers

• N forks in the middle of the table
• N lawyers, each takes one forks at a time
• Lawyers need k forks to eat, k > 1

• What are the safe states?
• What are the unsafe states?
• What are the doomed states?



Maybe 1, Maybe 2 Forks Lawyers

• Lawyers in a circle with a fork between each adjacent pair
• “Nobody’s going to tell me in what order I have to pick up my forks!”
• If a lawyer is holding one fork, the next thing s/he might do is

• Try to get the other fork, or
• Use the one fork and then put it down

• Note that the situation where every lawyer is holding a fork is 
not (necessarily) deadlock

• Note that the situation where every lawyer is holding one fork 
and waiting to get a second is deadlock



General Method: Banker’s Algorithm
(Pessimistic)

Basic Setup

• There is a resource manager that “owns” all the resources

• There can be many types of resources, all controlled by one manager

• Threads request resources from the manager and return them to the manager

• Requests/allocations are one resource at a time

Dynamic Operation

• Threads state maximum resource needs to manager when they start

• Threads request resources dynamically as needed

• Manager delays granting request if doing so could lead to deadlock

• Manager grants request if some sequential ordering of threads is deadlock free



Banker’s Algorithm
• Grant request iff result is a safe state

• Simple Example: proceed if total available resources - # allocated >= max remaining 

that might be needed by this thread in order to finish

• More generally, allocate resource if manager can find a way for all threads to 

eventually finish, even if each asks for its maximum request, even if the 

requested resource is allocated

• Otherwise, don’t allocate and block thread until it’s safe to grant its request

• Why would you want to go through all this trouble?

• Sum of maximum resource needs of threads can be greater than the total resources

• No static ordering (or any other) constraints on acquiring resources that have to be 

respected in the code



Another Approach: Detect and Repair
(Optimistic)

• Possible Algorithm
• Scan wait for graph
• Detect cycles
• Fix cycles

• Proceed without the resource
• Requires robust exception handling code

• Roll back and retry
• Transaction: all operations are provisional until have all required resources to 

complete operation



Detecting Deadlock



Yet Another Approach: Non-Blocking 
Algorithms

• An algorithm is non-blocking if a slow thread cannot prevent another 
faster thread from making progress

• Using locks is not non-blocking because a thread may acquire the lock and 
then run really really slowly

• (Why?)

• Non-blocking algorithms are often built on an atomic hardware
instruction, Compare And Swap (CAS)

bool CAS(ptr, old, new) {
if ( *ptr == old ) { *ptr = new;  return true; }
return false;

}



Example: Non-blocking atomic integer

int atomic_int_add(atomic_int *p, int val) {
int oldval;
do { 

oldval = *p;
} while ( !CAS(p, oldval, oldval+val); 

);

• What happens if multiple threads execute this concurrently?
• Does every thread make progress?
• Does at least one thread make progress in bounded number of steps?

• Suppose a thread currently executing this routine is pre-empted?



Why Non-blocking?
Two words: No locks!

• With locks, what happens if a thread is pre-empted while holding a lock?

• With locks, deadlock might be possible.  
• Is it possible when there are no locks?

• Priority inversion and locks
• Assume threads have been assigned priorities, and we’d like to preferentially 

allocate cores to the highest priority runnable threads
• Now suppose a low priority thread holds a lock needed by a high priority thread
• Medium priority threads might steal the core from the low priority thread, 

indefinitely delaying the high priority thread!

• Alternative solution (to non-blocking): priority inheritance
• Raise the priority of a thread holding a lock to the maximum priority of any 

thread waiting for the lock



Why Not Non-Blocking?

• 1 word: complicated! [fragile, error prone, special cases…]
• Let’s build a non-blocking FIFO queue
• What problems do we anticipate with these?

null
FIFO object

empty FIFO

FIFO objectNon- empty 
FIFO value value

null
value

head
FIFO objectNon- empty 

FIFO (V2) value value
null

value
tail

How would you build enqueue using CAS?
How would you build dequeue using CAS?

1st

try

2nd

try



Why not non-blocking?
(Non-blocking FIFO implementation)

Pointers are stored with a generation number in one 8-byte quantity
(32-bit pointer + 32-bit generation number)

From Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms
by Michael & Scott.



Non-blocking FIFO

pointer gen #pointer_t

head

tail
empty FIFO

null

xxx

dummy nodeFIFO object

non-empty 
FIFO

(Version 1)

head

tail xxx 10

null

222

dummy nodeFIFO object



Non-blocking FIFO: enqueue value 17

head

tail xxx 10

null

222

dummy nodeFIFO object

null

17

1. Update tail->next to point to new node
2. Update tail to point to new node

But other inserts might be going on at same time…

In general, the tail pointer might “fall behind” the actual tail of the FIFO.
Think of the tail pointer as a performance hint

• it’s better to start looking for the tail from where it points than from where 
the head pointer points

null

-10



Non-blocking FIFO: dequeue

head

tail xxx 10

null

222

dummy nodeFIFO object

1. Return failure if head pointer is null
2. Update tail->head to point to next node
3. Free previous dummy node
4. Return 10

But other dequeues might be going on at same time…
The first of them might free the node that contains the value I need (10)!

1.5  So, grab the value optimistically, then return it only if you manage to move the 
head pointer to that node (making it the new dummy node).

dummy node



Non-blocking FIFO: enqueue()



Non-blocking FIFO: dequeue



Performance Results

12 processor Silicon Graphics Challenge


