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Temporal relations

• Machine instructions executed by a single thread are totally ordered
• A < B < C < …
• (Interesting aside: actually, that isn’t necessarily true, physically.  To go fast, 

the CPU tries to execute many instructions at once, possibly out of order. 
However, it does so in a way that it has the same effect as totally ordered 
execution.  Usually.)

• Unless there is explicit synchronization, instructions executed by 
distinct threads must be considered unordered

• Not X < X’, and not X’ < X

• Not X < X’ and not X’ < X is simultaneous
• unordered
• at the same time



Example

main()

A

B

pthread_create()

A'
sub()

C

B'

• A < B < C
• A' < B'
• A < A’
• C == A'
• C == B'

Y-axis is “time”

Could be one core, could 
be multiple cores.



Critical Sections / Mutual Exclusion / Locks

• Sequences of instructions that may get incorrect results if executed 
simultaneously are called critical sections

• (We also use the term race condition to refer to a situation in which 
the results depend on timing)

• Mutual exclusion means “not simultaneous”
• Either A < B or B < A
• We don’t care which

• Forcing mutual exclusion between two critical section executions is 
sufficient to ensure correct execution – guarantees ordering

• One way to guarantee mutually exclusive execution is using locks



Critical sections

Possibly incorrect Correct Correct

T1 T2 T1 T2 T1 T2

is the “happens-before” relation

Critical sections How many cores 
are in use here?



When do critical sections arise?

• One common pattern:
• read-modify-write of

• a shared value (variable)
• in code that can be executed concurrently

(Note:  There may be only one copy of the code (e.g., a procedure), but it can 
be executed by more than one thread at a time)

• Shared variables
• Globals and heap-allocated variables
• to keep your sanity, follow the convention of NOT sharing local variables 

(which are on the stack) across threads
(Never give a reference to a stack-allocated (local) variable to another thread, 
unless you’re superhumanly careful …)

• Can you pass a local as an argument to a function?



Example:  buffer management
• In this example, one thread puts data into a buffer that another 

thread reads from
• Shared resource: buffer data structure
• Read-modify-write:  each slot is either empty or free; operations 

get() and put() both read and modify a slot status 

disk reader 
thread

network 
writer 
thread

circular 
buffer



Why use threads in that example?

vs.



The classic shared bank account example

• Suppose we have to implement a function to withdraw money from a 
bank account:

int withdraw(account, amount) {
int balance = get_balance(account);  // read
if (balance >= amount) {

balance -= amount; // modify
put_balance(account, balance); // write
spit out cash;

}
}

• Now suppose that you and your partner share a bank account with a balance of $500.

• What happens if you both go to separate ATM machines, and simultaneously withdraw $50 
from the account?



• Assume the bank’s application is multi-threaded, and…
• A random thread is assigned a transaction when that transaction is 

submitted

int withdraw(account, amount) {

int balance = get_balance(account);

if (balance >= amount) {

balance -= amount;

put_balance(account, balance);

spit out cash;
}

}

int withdraw(account, amount) {

int balance = get_balance(account);

if ( balance >= amount ) {
balance -= amount;

put_balance(account, balance);

spit out cash;
}

}



Interleaved schedules
• The problem is that the execution of the two threads can be 

interleaved, assuming preemptive scheduling:

• What’s the account balance after this sequence?
• Who’s happy, the bank or you? 
• Suppose the two of you make simultaneous deposits?

• How often is this sequence likely to occur?
• Can this happen if there is only one physical core?

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

put_balance(account, balance);

spit out cash;

Execution sequence
as seen by CPU

context switch

context switch

How many cores 
are in use in this 
example?



Other Execution Orders

• Which interleavings are ok?  Which are not?

int withdraw(account, amount) {

int balance = get_balance(account);

if ( balance >= amount ) {

balance -= amount;

put_balance(account, balance);

spit out cash;
}

}

int withdraw(account, amount) {

int balance = get_balance(account);

if ( balance >= amount ) {

balance -= amount;

put_balance(account, balance);

spit out cash;
}

}



int xfer(from, to, amt) {

withdraw( from, amt );

deposit( to, amt );

}

How About Now?

• Morals:
• Interleavings are hard to reason about

• We make lots of mistakes
• Control-flow analysis is hard for tools to get right

• Identifying critical sections and ensuring mutually exclusive access is … 
“easier”

• We’d like it to be easier still!

int xfer(from, to, amt) {

withdraw( from, amt );

deposit( to, amt );

}



i++;

Another example

i++;

Why is this a 
critical section?



Correct critical section requirements
• Correct critical sections have the following requirements

1. mutual exclusion
• at most one thread is in the critical section
• Ridiculous solution so far: Don’t let any code execute critical section, ever

2. progress
• if thread T is outside the critical section, then T cannot prevent thread S from entering 

the critical section
• Ridiculous solution so far: Let there be one “chosen thread” that is allowed to execute 

critical sections, but no others
• That actually isn’t always a bad idea...

3. bounded waiting (no starvation)
• if thread T is waiting on the critical section, then T will eventually enter the critical 

section
• assumes threads eventually leave critical sections

4. performance
• the overhead of entering and exiting the critical section is small with respect to the work 

being done within it (related to granularity)
• High overhead solution:  all threads wanting to enter critical section contact a server and 

the server replies when it’s your turn to enter



Synchronization mechanisms for building critical sections

• Locks (spinlocks)
• primitive, minimal semantics; used to build others

• Mutexes (blocking locks)

• Semaphores
• basic, easy to get the hang of, somewhat hard to program with

• Monitors
• higher level, “requires” language support, implicit operations
• easier to program with; Java “synchronized()” as an example

• Messages
• simple model of communication and synchronization based on (atomic) 

transfer of data across a channel
• direct application to distributed systems



Locking (Locks)

• Locking has two operations:
• acquire(): obtain the right to enter the critical section
• release(): give up the right to be in the critical section
• (Note:  terminology can vary:  acquire/release, lock/unlock)

• acquire()/release() provide the four conditions required to be a critical 
section solution

• A lock is (usually) a memory object and code that supports those 
operations in a particular way (that we’ll see shortly)



Locks: Example execution

lock()

unlock()

lock()

unlock()

Two choices:
• Spin
• Block
• (Spin-then-block)

Locks:  Example

What happens during this time?
(spinlock vs. mutex)



Acquire/Release
• Each threads pairs calls to acquire() and 4

• between acquire()and release(), the thread holds the lock

• The acquire() call is the request.
The return is the response indication that the caller now “owns” 
(holds) the lock

• at most one thread can hold a lock at a time

• What happens if the calls aren’t paired (fail to call release)?
• What happens if the two threads acquire different locks?

(I think that access to a particular shared data structure is mediated by lock A, and you 
think it’s mediated by lock B)

• Why is granularity of locking important
• fine grained => not much work done between acquire() and release()
• coarse grained => lots of work done between acquire() and release()



Using locks

• What happens when green tries to acquire the lock?
• Why is reading the balance inside the critical section?
• Why isn’t “spit out cash” inside the critical section?

• Could it be put inside the critical section?

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

if ( balance >= amount ) {

balance -= amount;

put_balance(account, balance);
}

release(lock);

spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l
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ct
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n

spit out cash;



Roadmap …
• Where have we just been?

• Critical sections are a common property of concurrent/parallel code
• Mutual exclusion is a mechanism to ensure a kind atomic execution of critical sections

• Where are we going?
• Synchronization constructs provide the programmer with abstractions that address synchronization 

problems, like critical sections
• The most primitive/fundamental abstraction is acquire()/release(): the lock

• It can provide a solution if used correctly
• It’s easy to mis-use it, though

• “Higher level” synchronization abstractions provide additional semantics that can make them easier to use 
correctly, but usually at the cost of more overhead

• The implementation of these higher level synchronization primitives often involves critical sections, so we 
layer the implementation (relying on the lock, say, for mutual exclusion)

• At the bottom of the layered implementations, it turns out we require some sort of hardware 
support

• Software implementing acquire()/release “needs” to do a read-modify-write
• Software can’t use itself to achieve that, so we need lower level support
• So we “need” some atomic instruction that does at least two logically distinct things

• Basically,  there’s a read phase followed by a write phase
• Done atomically

• This hardware mechanism(s) are not intended to be utilized directly in user programs
• They’re used to build software that implements somewhat higher abstractions that are used in user programs



Locks: Example execution

lock()

unlock()

lock()

unlock()

Two choices:
• Spin
• Block
• (Spin-then-block)

Our First Primitives: Locks and Mutexes

What happens during this time?

1. Spinlock – keep using core 
while waiting

2. Mutex – give up core while 
waiting



Spinlocks

• A spinlock is a lock where the thread attempting acquire() “spins” 
(tries over and over without relinquishing its core)

• How do we implement spinlocks?  Here’s one attempt:

• Why doesn’t this work?
• where is the race condition?
• does it work if there’s only one core?

struct lock_t {

int held = 0;

}

void acquire(lock) {

while (lock->held);

lock->held = 1;

}

void release(lock) {

lock->held = 0;

}

the caller “busy-waits”,
or “spins”, for lock to be
released  hence spinlock

Does this work on a single 
core machine? 



Implementing spinlocks
• Problem is that implementation of spinlocks is itself a critical section

• acquire/release must be atomic
• atomic == executes as though it could not be interrupted
• code that executes “all or nothing”

• Need help from the hardware

1. atomic instruction
• many instances of the instruction can be executed concurrently, because the hardware 

provides atomicity at the instruction level
• test-and-set, compare-and-swap, …

2. disable interrupts
• Terrible idea…
• Used in xk…
• Provides for atomic sequence of arbitrary instructions, when it works



Atomic Instruction: Test-and-Set
• CPU hardware provides the following operation as a single atomic 

instruction:

• Remember, this is a single atomic instruction …
• Remember, this is just one example of possible hardware support

bool test_and_set(bool *flag) {

bool old = *flag;  // save value in a local (register)

*flag = True;      // make sure value is True

return old;        // return old value

}



Implementing spinlocks using Test-and-Set

• So, to fix our broken spinlocks:

• mutual exclusion? (at most one thread in the critical section)
• progress? (T outside cannot prevent S from entering)
• bounded waiting? (waiting T will eventually enter)
• performance? (low overhead?)

struct lock {

int held = 0;

}

void acquire(lock) {

while(test_and_set(&lock->held));

}

void release(lock) {

lock->held = 0;

}



Reminder of use …

• How could a thread spinning in acquire (that is, stuck in a test-and-
set loop) yield the CPU?

• voluntarily calls yield( ) (spin-then-block lock)
• there’s an involuntary context switch (e.g., timer interrupt)

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
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ca
l
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n

spit out cash;



Problems with spinlocks
• Spinlocks work, but can be wasteful

• if a thread is spinning on a lock, the thread holding the lock cannot make progress
• You’ll spin for a scheduling quantum

• (pthread_spin_t)

• Generally want to use spinlocks only as primitives to build higher-level 
synchronization constructs

• We’ll see later how to build blocking locks
• But there is overhead – can be cheaper to spin
• (pthread_mutex_t)

• Are there other “policy” choices (than spin and block)?
• Who should make them?
• pthread_spin_trylock()



A second approach:  Disabling interrupts

struct lock {

}

void acquire(lock) {

cli();   // disable interrupts

}

void release(lock) {

sti();    // reenable interrupts

}

What’s the key point about 
disabling interrupts?



Problems with disabling interrupts

• Available only to the kernel!
• Can’t allow user-level to disable interrupts!

• Insufficient on a multicore!
• Each core has its own interrupt mechanism

• “Long” periods with interrupts disabled can wreak havoc with 
devices!

• “Stuff doesn’t work”

• Just as with spinlocks, you (would) want to use disabling of interrupts 
only when the duration of disabling is well understood (and short)

• E.g., to build higher-level synchronization constructs



Summary
• Synchronization enforces temporal ordering constraints among instruction 

streams
• Adding synchronization can eliminate races

• Synchronization can be provided by locks, semaphores, monitors, messages 
…

• Spinlocks are a lowest-level mechanism
• primitive in terms of semantics – error-prone
• implemented by spin-waiting (crude) or by disabling interrupts (even cruder)
• Make sense only when it’s “guaranteed” the lock will be released very soon

• Next…
• Condition variables

• Blocking as a concept/mechanism
• Semaphores: synchronization variable

• Importantly, they are implemented by blocking, not spinning
• Locks can also be implemented in this way

• Monitors: programming language support
• are significantly higher level
• utilize programming language support to reduce errors


