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Lecture Questions

• What is the basic control flow of the system?
• Why do transitions from user code to the OS take place?
• Since they run on the same CPU, why can’t applications do 

everything the OS can do?
• What happens on a transition from user code into the OS?
• On a transition from the OS to user code?
• What mechanisms does the hardware provide to help the OS keep 

control of the system?
• When the OS is running, what stack is it using (in xk)?
• How does xk use the segmented memory system provided by 

x86_64?
• How is memory protected?
• How are IO devices protected?



Low-level architecture affects the OS 
dramatically

App

Hardware

Who’s making sure the app behaves?

Who should get to define what “behaves” means?

(Hardware provides mechanism and OS provides policy.)



Low-level architecture affects the OS 
dramatically
• The operating system supports sharing of hardware and protection

of hardware
• multiple applications can run concurrently, sharing resources
• a buggy or malicious application can’t violate other applications or the 

system

• Those are high level goals
• There are many mechanisms that can be used to achieve them

• The architecture determines which approaches are viable 
(reasonably efficient, or even possible)
• includes instruction set  (synchronization, I/O, …)
• also hardware components like MMU or DMA controllers



Architectural features affecting OS’s

• These hardware features were built primarily to support OS’s:
• timer (clock) operation
• synchronization instructions (e.g., atomic test-and-set)
• memory protection
• I/O control operations
• interrupts and exceptions
• protected modes of execution (kernel vs. user)
• privileged instructions
• system calls (and software interrupts)
• virtualization architectures



The OS Needs To Be Special
• Only the OS should be able to:

• directly access I/O devices (disks, network cards)
• why?

• manipulate memory state management
• page table pointers, TLB loads, etc.
• why?

• manipulate special ‘mode bits’
• interrupt priority level
• why?

• But users can put any bit strings in memory they want
• so they can execute any instructions that the OS uses to do those things

• So how can this work?
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So How Can This Work?
• Some hardware resource must be available to the OS but not to applications

• Could be instructions
• Could be access to special registers and/or addresses

• Turns out it’s both!

• The CPU hardware provides privileged instructions that “only the OS can 
execute”

• Some resources can be modified only by instructions that are privileged
• E.g., information related to address translation

• The OS can use them to establish an execution environment that limits 
access (e.g., to memory)
• The application cannot remove the restrictions because it must execute privileged 

instructions to do so



“... only the OS can execute”

• This is a policy goal
• What mechanism(s) can be used to achieve it?

• Q1:  How can the CPU hardware tell when the OS is running?
• A1: It can’t.  The OS is a concept, the hardware is a state machine.

• Q2: What should happen when something that isn’t the OS tries to 
execute a privileged instruction?
• (Poor) A2: As a mechanism, the CPU could just consider it to be a NOP, say.
• (Good) A2:  Gee, what happens is really a policy decision.  The OS should 

make it, not the hardware.



Policy/Mechanism

• Here’s my lame analogy
• Back when you could go out to a restaurant for dinner

• You set the policy:  what set of things to order, maybe what order they arrived in
• The restaurant implemented the mechanism:  a menu of things you could order, a 

stockpile of ingredients, pots/pans/stove, a chef, waitstaff

• You can order a bottle of wine and pancakes if you want
• That’s a positive
• The restaurant is flexible enough to be attractive to all sorts of customers, 

even some who seem crazy

• What is the equivalent of pots and pans and stoves and chefs in the 
CPU?
• What are the CPU mechanisms that allow the OS to realize its policies?



Mechanism: How Does CPU Decide Whether 
or Not to Execute a Privileged Instruction

• Privilege Level:  There is at least one bit of data somewhere 
accessible to the CPU (e.g., in a special register)
• When the bit == 1 we say we’re executing in privileged mode, and the CPU is 

willing to execute privileged instructions
• When the bit == 0 we say we’re executing in unprivileged (or user) mode, 

and the CPU is unwilling to execute privileged instructions

• Exception Mechanism:  What happens if the CPU fetches a privileged 
instruction while in unprivileged mode?
• It invokes the OS, so that it can decide what to do
• We’ll see exactly how in just a bit



Making CPU Privilege Mode == Running OS

Time

user

code

user

OS

user

code OS

privileged privilegeduser

• OS runs first (boot)
• CPU starts in privileged mode

• OS sets privilege mode to user before handing CPU over to user code
• So far so good...

• Eventually we need to run the OS again...

OS

privileged



Entering the OS: system calls

• Sometimes user code wants the OS to do something for it
• E.g., read/write files, send/receive network data, start another program 

running, etc.

• In the abstract, it wants to do a procedure call, as though the OS 
were a library
• Establish some arguments to be passed to the OS 
• Let the OS run for a  bit and produce return values (and/or side effects)
• Return to the statement following the call to the OS procedure
• Find the return values produced by the OS

• CPU is at user privilege while executing user code
• CPU needs to be in privileged mode while executing the OS
• How can the user cause the CPU to transition from unprivileged to 

privileged?



Making CPU Privilege Mode == Running OS

Time

user

code

user

OS

user

code OS

privileged privilegeduser

• Each transition from user level code to OS code transfers control to the same place 
(the orange arrow)

• The user level code passes as an argument a “syscall number” identifying which 
operation it is asking for (as well as any further arguments needed for that system 
call)

• The OS runs at privileged level starting with lines of code it decided upon
• User level code can’t both elevate CPU privilege level and define what instruction 

to execute next

OS

privileged



System Calls

• User programs must cause execution of an OS
• OS defines a set of system calls
• App code places a bunch of arguments to the call somewhere the OS can a 

find them
• e.g., on the stack or in registers

• One of the arguments “names” the system call that is being requested
• usually a syscall number
• when app code wants to call a subroutine in that app, how does it “name” which 

one it wants?
• App executes a syscall instruction

• CPU privilege level is set to privileged
• PC is set to the contents of a privileged register
• during boot the OS set that register to point at the OS “trap handler” method
• user code can’t mess with it because modifying that register is a privileged operation



syscall/sysret instructions

• The syscall instruction atomically:
• Sets the execution mode to privileged
• Sets the PC to a handler address (that was established by the OS during boot)
• Saves the current (user) PC

• Why?

• The sysret instruction atomically:
• Restores the previously saved user PC
• Sets the execution mode to unprivileged



“Protected procedure call”

• Caller puts arguments in a place callee expects (registers or stack)
• Caller causes jump to OS by executing syscall instruction

• The OS determines what address to start executing at, not the caller
• One of the passed args is a syscall number, indicating which OS function to invoke
• Some hardware state that can’t be saved if left to software (e.g., the user level PC of 

the instruction that follows the syscall instruction) is “pushed on the stack”
• Which stack?

• Callee (OS) saves caller’s state (registers, other control state) so it can use the 
CPU

• OS function code runs
• OS must verify caller’s arguments (e.g., pointers)

• OS (mostly) restores caller’s state
• OS returns by executing sysret instruction 

• Automatically sets execution mode to user and PC to return address previously saved 
on the stack



A kernel crossing illustrated

user mode

kernel mode

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

Save user PC
PC = trap handler address
Enter kernel mode

Save app state
Verify syscall number
Find sys_read( ) handler in vector table

trap handler

sys_read( ) kernel routine
Verify args
Initiate read
Choose next process to run
Setup return values
Restore app state

SYSRET instruction

PC = saved PC
Enter user mode



One More Issue: Stacks
• The kernel code is structured like user level code

• It needs a stack

• The transition from user level to kernel level must involve a change in 
which stack is in use
• A stack is just a region of memory used as the stack, so there can be any 

number of them in memory

• On some processors this transition is done in software
• On the x86 family it is done in hardware as part of the syscall

instruction
• On syscall, the user-level SP is saved to a temporary, the SP is set to an 

address in a privileged register previously initialized by the OS, and then the 
temporary is pushed onto that stack (along with the user-level PC)

• On sysret, more or less the reverse is done

• Why can’t the OS just use the user-level stack?



x86 Interrupt Stack (Mechanism)



System call issues

• What would be wrong if a syscall worked like a regular subroutine 
call, with the caller specifying the next PC?

• What would happen if kernel didn’t save state?

• Why must the kernel verify arguments?

• How can you reference kernel objects as arguments to or results 
from system calls?
• What does that question mean?!



Exception Handling and Protection

• All entries to the OS occur via the mechanism just described
– Acquiring privileged mode and branching to the trap handler are 

inseparable

• Terminology:
– Interrupt:  asynchronous event; caused by an external device
– Exception: synchronous event; unexpected problem with instruction
– Trap: synchronous event; intended transition to OS due to an instruction

• Privileged instructions and resources are the basis for most 
everything:  memory protection, protected I/O, limiting user 
resource consumption, …



Some Details

• The architecture defines the trap handling mechanism
• Exactly what’s done in hardware and what in software differs across 

architectures
• So, what I described isn’t “the way it’s done” it’s more the idea of the way it’s 

done

• For example, x86 trap handling doesn’t have a register that gives the 
single entry point into the OS, it has something more complicated
• You can think of it as a privileged register that points to an array of entry 

addresses
• On trap/exception/interrupt, the hardware uses the 

trap/exception/hardware type (a number, called the “vector”) to index the 
table and set the PC

• In general, x86 does a lot of complicated things in hardware, and 
RISC-like processors try to push as much as possible to software



x86 Interrupt/Trap Handling: Interrupt vectors



x86 Interrupt/Trap Handling: Overview



x86 Interrupt/Trap Handling: Finding the IDT



x86 Interrupt/Trap Handling: IDT entries



x86 Interrupt/Trap Handling: Segment 
Descriptors



x86 Interrupt/Trap Handling: Stacks



Exception Summary
• Basically all protection provided by the OS relies in some way on the 

exception mechanism
• Performance requires application code to run directly on the CPU and 

memory hardware
• That leaves it to the hardware to intercept unsafe/illegal activity
• Separation of policy and mechanism means that when the hardware notices 

something wrong, it should invoke OS code to decide what to do in response

• The same mechanism is used whenever the hardware wants to 
“upcall” to the OS, even when nothing has gone wrong
• Interrupts:  some IO device wants attention
• Traps: user level code wants to do a syscall



Exception Generalization
• To think about:

• Let’s move up a level, from hw/sw to os/user-level code.  

• Might there be situations in which it makes sense for the OS to provide 
mechanism and the application to provide policy
• The OS mechanism would be the detection of some event
• The application policy would be the steps it wants to take in response to that event
• What might be an example of an OS-level “event”?

• What would the mechanism to “upcall” from OS  to app need to do?
• Invoke a handler method in the app, implying
• Finding a thread of execution to execute the handler (a stack)
• How would it know the location of the handler?



Issue: Memory protection
• OS must protect user programs from each other

• malice, bugs

• OS must also protect itself from user programs
• integrity and security
• what about protecting user programs from OS?

• Simplest scheme: base and limit registers
• (Hey, segments!)
• are these protected?

Process A

Process B

Process C

base reg
limit reg

base and limit registers are 
loaded by OS before starting 
program



More sophisticated memory protection

• Paging, segmentation, virtual memory
• page tables, page table pointers
• translation lookaside buffers (TLBs)
• page fault handling
• isolation via naming

• Coming later in the course
• also coming earlier in your course sequence!
• so we won’t spend much time on these in 451



Issue: I/O control

• Issues:
• how does the OS start an I/O?

• special I/O instructions
• memory-mapped I/O

• special addresses, not special instructions

• how does the OS notice when something interesting has happened 
(e.g., an I/O has finished or a network packet has arrived)?
• polling
• Interrupts

• how does the OS exchange data with an I/O device?
• Programmed I/O (PIO)
• Direct Memory Access (DMA)



Asynchronous I/O

• what does the “asynchronous” part mean?
• device performs an operation asynchronously to CPU

• Interrupts are the basis for asynchronous I/O
• device sends an interrupt signal on bus when done
• in memory, a vector table contains list of addresses of kernel routines to 

handle various interrupt types
• who populates the vector table, and when?

• CPU switches to address indicated by vector index specified by interrupt 
signal and the stack registered for that handler

• What’s the advantage of asynchronous I/O?
• Is this an advantage only to the OS?  Is there a reason for an individual app to 

want to use asynchronous I/O?  What would be required to allow it to do so?



Issue: Taking the CPU Back from Apps

• Q: How can the OS prevent runaway user programs from hogging the 
CPU (infinite loops?)

• A: Use a hardware timer that generates a periodic interrupt
• before it transfers to a user program, the OS loads the timer with a time to 

interrupt
• “quantum” – how big should it be set?

• when timer fires, an interrupt transfers control back to OS
• at which point OS must decide which program to schedule next
• very interesting policy question: we’ll dedicate a class to it

• Should access to the timer be privileged?
• for reading or for writing?



Issue: Synchronization

• Interrupts cause a wrinkle:
• may occur any time, causing code to execute that interferes with code that 

was interrupted
• OS must be able to synchronize concurrent processes

• Synchronization:
• guarantee that short instruction sequences (e.g., read-modify-write) execute 

atomically
• one method: turn off interrupts before the sequence, execute it, then re-

enable interrupts
• architecture must support disabling interrupts

• Privileged???
• does this method work?

• another method:  have special complex atomic instructions
• read-modify-write
• test-and-set
• load-linked store-conditional



“Concurrent programming”

• Management of concurrency and asynchronous events is an 
important difference between “systems programming” and 
“traditional application programming”
• “event-driven” application programming is a middle ground
• And in a multi-core world, more and more apps have internal concurrency 

and more and more languages acknowledge and support it
• And in a networked world more and more apps engage in asynchronous I/O 

(network communication)

• Arises from the architecture
• Can be sugar-coated, but cannot be totally abstracted away

• Serious intellectual challenge
• Unlike vulnerabilities due to buffer overruns, which are just sloppy 

programming



Architectures are still evolving

• New features are still being introduced to meet modern demands
• Support for virtual machine monitors
• Hardware transaction support (to simplify parallel programming)
• Support for security (encryption, trusted modes)
• Increasingly sophisticated video / graphics
• Other stuff that hasn’t been invented yet…

• In current technology transistors are free – CPU makers are looking for 
new ways to use transistors to make their chips more desirable



Some questions

• Why wouldn’t you want a user program to be able to access an I/O 
device (e.g., the disk) directly?
• Why would you?!

• OK, so what keeps this from happening?  What prevents user 
programs from directly accessing the disk?

• How then does a user program cause disk I/O to occur?



Some questions
• What prevents a user program from writing the memory of another user 

program?
• Why might you want to allow it to?

• What prevents a user program from writing the memory of the operating 
system?

• What prevents a user program from over-writing its own instructions?
• Why do you want to prevent that?
• Why do you want to allow it?!

• Is there any reason to support preventing an application from over-writing 
any of its own data?
• Is there a use for read-only data memory?

• What prevents a user program from doing a denial of service attack on the 
CPU simply by going into an infinite loop?



Lecture Question Answers

• What is the basic control flow of the system?
• The CPU switches between running OS code and application code

• Why do transitions from user code to the OS take place?
• Interrupts – some IO device (typically) needs attention
• Exceptions – the CPU has detected something problematic in completing execution of an 

instruction
• Trap – the purpose of the instruction being executed is to transition into the OS (syscall)

• Since they run on the same CPU, why can’t applications do everything the OS can do?
• The hardware has two or more privilege levels
• Some instructions are privileged – require a sufficiently high privilege level – for the CPU to be 

willing to execute them
• What happens on a transition from user code into the OS?

• Some registers that execution of the OS is about wipe out are saved by hardware, e.g., the user 
code PC at which the switch is occurring

• The PC is set to the address previously set by the OS.  The address is a safe entry point into the OS.
• The privilege level of the CPU is elevated so that it can execute privileged instructions
• The hw or sw saves all registers so that execution of the user code can eventually be resumed

• On a transition from the OS to user code?
• The previously saved registers (including the PC) are restored on t he CPU
• The privilege level is lowered to user level



Lecture Question Answers

• What mechanisms does the hardware provide to help the OS keep 
control of the system?
• CPU privilege level + privileged instructions
• memory access limitations, e.g., virtual memory
• the exception mechanism – detecting when something that needs OS 

attention has happened and causing a switch into the OS

• When the OS is running, what stack is it using (in xk)?
• A per-process kernel stack

• How does xk use the segmented memory system provided by 
x86_64?
• It basically renders it moot by mapping every hardware segment to the full 

linear address space (i.e., base 0 and length 4GB)



Lecture Question Answers

• How is memory protected?
• On modern system, virtual memory
• The OS sets a privileged CPU register to point to address mapping structures 

for the address space the CPU should be using (e.g., when it dispatches a 
user process)

• How are IO devices protected?
• Depending on the architecture or even system, it could be privileged 

instructions are required to communicate with the IO devices, or it could be 
that protected addresses must be read/written to communicate with them


