
● Kernel / Protection
○ Kernel vs User Space
○ Avoiding boundary crossings

● Virtual Address Space
○ Different Regions
○ Growing Stack on demand.
○ Heap allocation.

● Executing Kernel Code
○ Synchronous vs. Asynchronous transfer
○ Entry point
○ Interrupts

■ Timer
○ Traps

■ System Call Process
■ Exceptions

○ System call process
● Processes

○ What is a process?
■ Process vs. thread

○ CreateProcess() vs. fork()
○ fork(), wait(), exec()
○ COW fork() vs Deep Copy fork()
○ Process Cleanup

■ Orphans / Zombies
○ Context switching

■ Pre-emptive (timer) vs. non-preemptive (yield(), sleep())
○ Process States and Transitions

● File Descriptors
○ Open
○ Read/Write
○ fork() and the Process Open File Table

● Synchronization
○ Spinning vs. Sleeping

■ When to use which.
■ Spinlocks

● Disabling interrupts - when does it work?
■ Sleeplocks

● Cost of changing to sleep state
■ Atomic Operations

● Test-and-set and Compare-and-swap
■ Non-blocking sync

○ Condition Variables

● Inter Process Communication (IPC) / Pipes

○ Pipes vs Files for communication.
○ Pipe Open/Close.

● Inter Process Communication (IPC) / Signal Handling
○ What is it?

■ Example: Ctrl-C on a user process, how does that work?
● CPU Scheduling

○ FIFO
○ Multi-Level Feedback Queue
○ Round Robin

● File System
○ Layers of the file system calls
○ Logging
○ Log File Systems (LFS)
○ Extent Management implementations (pre-alloc vs. array vs. Unix style

indirection using blocks).
○ Transactions and Atomicity
○ INodes

● Persistent Disk
○ RAID
○ NVM & Flash Storage
○ Disk data structures

■ Bitmap
■ Log region
■ I Nodes
■ Superblock
■ Boot block

○ Disk and Cache consistency
● Virtual Memory

○ Linear vs Virtual vs Physical Address
● Paging

○ What purpose does it serve?
○ Fragmentation
○ Page Replacement

■ LRU
○ Multiple Page Levels (Page Directory)
○ Demand-Paged Virtual Memory
○ Address Translation and the TLB
○ Page Faults

