
● Kernel / Protection
○ Interpreting vs. direct execution on hardware
○ Kernel vs User Space

■ Privilege bit; privileged instructions
■ Memory protection
■ Timer

○ Avoiding boundary crossings
■ Big operations
■ Caching

● Virtual Address Space
○ Kernel allocated space
○ Address translation to physical
○ Differences between kalloc and malloc

● Executing Kernel Code
○ Synchronous vs. asynchronous transfer
○ Interrupts

■ Timer
○ Traps

■ System Call Process
■ Motivation for single access point.

○ Exceptions
○ Distinguishing different scenarios
○ System call process

● Processes
○ What is a process?

■ Process vs. thread
○ CreateProcess() vs. fork()
○ fork() vs. exec()
○ wait()
○ Orphans / zombies
○ Context switching

■ Pre-emptive (timer) vs. non-preemptive (yield(), sleep())
○ Process States and Transitions
○ Scheduling in xk

● File Descriptors
○ Open
○ Close
○ Dup
○ Read/Write
○ Stat

● Synchronization
○ Process/thread wait()
○ Spinning vs. Sleeping

■ Spinlocks
● Disabling interrupts - when does it work?

■ Atomic Operations
● Test-and-set
● Compare-and-swap

■ Basic idea of optimistic / Non-blocking sync
■ Sleeplocks

● Cost of changing to sleep state
■ What situations would you use each?

○ Condition Variables
■ What are the xk equivalents to cond_wait, cond_signal, and

cond_broadcast?
■ How are these calls related?

● Inter Process Communication (IPC) / Pipes
○ How are pipes different than files?
○ How are they created/used?
○ What happens when you close a pipe?

● Inter Process Communication (IPC) / Signal Handling
○ What is it?

■ Example: Ctrl-C on a user process, how does that work?

