
Synchronization



Synchronization Motivation

• When threads concurrently read/write shared 
memory, program behavior is undefined

– Two threads write to the same variable; which one 
should win?

• Thread schedule is non-deterministic

– Behavior changes when re-run program

• Compiler/hardware instruction reordering

• Multi-word operations are not atomic



Question: Can this panic?

Thread 1

p = someComputation();

pInitialized = true; 

Thread 2

while (!pInitialized) 

; 

q = someFunction(p); 

if (q != someFunction(p))

panic



Why Reordering?

• Why do compilers reorder instructions?
– Efficient code generation requires analyzing 

control/data dependency
– If variables can spontaneously change, most compiler 

optimizations become impossible

• Why do CPUs reorder instructions?
– Write buffering: allow next instruction to execute 

while write is being completed

Fix: memory barrier
– Instruction to compiler/CPU
– All ops before barrier complete before barrier returns
– No op after barrier starts until barrier returns



Too Much Milk Example

Person A Person B

12:30 Look in fridge.  Out of milk.

12:35 Leave for store.

12:40 Arrive at store. Look in fridge.  Out of milk.

12:45 Buy milk. Leave for store.

12:50 Arrive home, put milk away. Arrive at store.

12:55 Buy milk.

1:00 Arrive home, put milk away.
Oh no!



Definitions

Race condition: output of a concurrent program depends on the 
order of operations between threads

Mutual exclusion: only one thread does a particular thing at a 
time

– Critical section: piece of code that only one thread can execute 
at once  

Lock: prevent someone from doing something

– Lock before entering critical section, before accessing shared 
data

– Unlock when leaving, after done accessing shared data

– Wait if locked (all synchronization involves waiting!)



Too Much Milk, Try #1

• Correctness property
– Someone buys if needed (liveness)

– At most one person buys (safety)

• Try #1: leave a note
if (!note)

if (!milk) {

leave note

buy milk

remove note

}



Too Much Milk, Try #2

Thread A

leave note A

if (!note B) {

if (!milk)

buy milk

}

remove note A 

Thread B

leave note B

if (!noteA) { 

if (!milk)

buy milk

}

remove note B 



Too Much Milk, Try #3
Thread A

leave note A

while (note B) // X

do nothing; 

if (!milk)

buy milk;

remove note A

Thread B

leave note B

if (!noteA) {   // Y

if (!milk)

buy milk

}

remove note B 

Can guarantee at X and Y that either:
(i) Safe for me to buy
(ii) Other will buy, ok to quit



Lessons

• Solution is complicated

– “obvious” code often has bugs

• Modern compilers/architectures reorder 
instructions

– Making reasoning even more difficult

• Generalizing to many threads/processors

– Even more complex: see Peterson’s algorithm 



Roadmap



Locks

• Lock::acquire

– wait until lock is free, then take it

• Lock::release

– release lock, waking up anyone waiting for it

1. At most one lock holder at a time (safety)

2. If no one holding, acquire gets lock (progress)

3. If all lock holders finish and no higher priority 
waiters, waiter eventually gets lock (progress)



Question: Why only Acquire/Release

• Suppose we add a method to a lock, to ask if 
the lock is free.   Suppose it returns true.  Is 
the lock:

– Free?

– Busy?

– Don’t know?



Too Much Milk, #4

Locks allow concurrent code to be much simpler:

lock.acquire();

if (!milk) 

buy milk

lock.release();



Lock Example: Malloc/Free

char *malloc (n) {

heaplock.acquire();

p = allocate memory

heaplock.release();

return p;

}

void free(char *p) {

heaplock.acquire();

put p back on free list

heaplock.release();

}



Rules for Using Locks

• Lock is initially free
• Always acquire before accessing shared data 

structure
– Beginning of procedure!

• Always release after finishing with shared data
– End of procedure!
– Only the lock holder can release
– DO NOT throw lock for someone else to release

• Never access shared data without lock
– Danger!



Will this code work?

if (p == NULL) {

lock.acquire();

if (p == NULL) {

p = newP();  

}

lock.release();

}

use p->field1

newP() {

p = malloc(sizeof(p));

p->field1 = …

p->field2 = …

return p;

}



Example: Bounded Buffer

tryget() {

item = NULL;

lock.acquire();

if (front < tail) {

item = buf[front % MAX];

front++;

}

lock.release();

return item;

}

tryput(item) {

lock.acquire();

if ((tail – front) < size) {

buf[tail % MAX] = item;

tail++;

}

lock.release();

}

Initially: front = tail = 0; lock = FREE; MAX is buffer capacity



Question

• If tryget returns NULL, do we know the buffer 
is empty?

• If we poll tryget in a loop, what happens to a 
thread calling tryput?



Condition Variables

• Waiting inside a critical section

– Called only when holding a lock

• Wait: atomically release lock and relinquish 
processor

– Reacquire the lock when wakened

• Signal: wake up a waiter, if any

• Broadcast: wake up all waiters, if any



Condition Variable Design Pattern

methodThatWaits() {

lock.acquire();

// Read/write shared state

while (!testSharedState()) {

cv.wait(&lock);

}

// Read/write shared state

lock.release();

}

methodThatSignals() {

lock.acquire();

// Read/write shared state

// If testSharedState is now true

cv.signal(&lock);

// Read/write shared state

lock.release();

}



Example: Bounded Buffer

get() {
lock.acquire();
while (front == tail) {

empty.wait(lock);
}
item = buf[front % MAX];
front++;
full.signal(lock);
lock.release();
return item;

}

put(item) {
lock.acquire();
while ((tail – front) == MAX) {

full.wait(lock);
}
buf[tail % MAX] = item;
tail++;
empty.signal(lock);
lock.release();

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables



Pre/Post Conditions

• What is state of the bounded buffer at lock 
acquire?

– front <= tail

– front + MAX >= tail 

• These are also true on return from wait

• And at lock release

• Allows for proof of correctness 



Pre/Post Conditions

methodThatWaits() {
lock.acquire();
// Pre-condition: State is consistent

// Read/write shared state

while (!testSharedState()) {
cv.wait(&lock);

}
// WARNING: shared state may
// have changed!  But

// testSharedState is TRUE 
// and pre-condition is true

// Read/write shared state
lock.release();

}

methodThatSignals() {
lock.acquire();
// Pre-condition: State is consistent

// Read/write shared state

// If testSharedState is now true
cv.signal(&lock);

// NO WARNING: signal keeps lock

// Read/write shared state
lock.release();

}



Condition Variables

• ALWAYS hold lock when calling wait, signal, 
broadcast
– Condition variable is sync FOR shared state
– ALWAYS hold lock when accessing shared state

• Condition variable is memoryless
– If signal when no one is waiting, no op
– If wait before signal, waiter wakes up

• Wait atomically releases lock
– What if wait, then release?
– What if release, then wait?



Condition Variables, cont’d

• When a thread is woken up from wait, it may not 
run immediately
– Signal/broadcast put thread on ready list
– When lock is released, anyone might acquire it

• Wait MUST be in a loop
while (needToWait()) {

condition.Wait(lock);
}

• Simplifies implementation
– Of condition variables and locks
– Of code that uses condition variables and locks



Java Manual

When waiting upon a Condition, a “spurious 
wakeup” is permitted to occur, in general, as a 
concession to the underlying platform 
semantics. This has little practical impact on 
most application programs as a Condition 
should always be waited upon in a loop, 
testing the state predicate that is being waited 
for.  



Structured Synchronization

• Identify objects or data structures that can be accessed 
by multiple threads concurrently

• Add locks to object/module
– Grab lock on start to every method/procedure
– Release lock on finish

• If need to wait
– while(needToWait()) { condition.Wait(lock); }
– Do not assume when you wake up, signaller just ran

• If do something that might wake someone up
– Signal or Broadcast

• Always leave shared state variables in a consistent state
– When lock is released, or when waiting



Remember the rules

• Use consistent structure

• Always use locks and condition variables

• Always acquire lock at beginning of procedure, 
release at end

• Always hold lock when using a condition 
variable

• Always wait in while loop

• Never spin in sleep()



Mesa vs. Hoare semantics

• Mesa

– Signal puts waiter on ready list

– Signaller keeps lock and processor

• Hoare

– Signal gives processor and lock to waiter

– When waiter finishes, processor/lock given back 
to signaller

– Nested signals possible!



FIFO Bounded Buffer
(Hoare semantics)

get() {
lock.acquire();
if (front == tail) {

empty.wait(lock);
}
item = buf[front % MAX];
front++;
full.signal(lock);
lock.release();
return item;

}

put(item) {
lock.acquire();
if ((tail – front) == MAX) {

full.wait(lock);
}
buf[last % MAX] = item;
last++;
empty.signal(lock);

// CAREFUL: someone else ran
lock.release();

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables



FIFO Bounded Buffer
(Mesa semantics)

• Create a condition variable for every waiter 

• Queue condition variables (in FIFO order)

• Signal picks the front of the queue to wake up

• CAREFUL if spurious wakeups!

• Easily extends to case where queue is LIFO, 
priority, priority donation, …

– With Hoare semantics, not as easy



FIFO Bounded Buffer
(Mesa semantics, put() is similar)

get() {

lock.acquire();

myPosition = numGets++;

self = new Condition;

nextGet.append(self);

while (front < myPosition

|| front == tail) {

self.wait(lock);

}

delete self;

item = buf[front % MAX];

front++;

if (next = nextPut.remove()) {

next->signal(lock);

}

lock.release();

return item;

}
Initially: front = tail = numGets = 0; MAX is buffer capacity
nextGet, nextPut are queues of Condition Variables



Implementing Synchronization



Implementing Synchronization

Take 1: using memory load/store

– See too much milk solution/Peterson’s algorithm

Take 2:

Lock::acquire() 

{ disable interrupts }

Lock::release() 

{ enable interrupts }



Lock Implementation, Uniprocessor

Lock::acquire() { 
disableInterrupts(); 
if (value == BUSY) { 

waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

} else { 
value = BUSY; 

} 
enableInterrupts(); 

}

Lock::release() { 
disableInterrupts();
if (!waiting.Empty()) { 

next = waiting.remove();
next->state = READY;    
readyList.add(next); 

} else {
value = FREE; 

} 
enableInterrupts(); 

} 



Multiprocessor

• Read-modify-write instructions
– Atomically read a value from memory, operate on it, 

and then write it back to memory

– Intervening instructions prevented in hardware

• Examples
– Test and set

– Intel: xchgb, lock prefix

– Compare and swap

• Any of these can be used for implementing locks 
and condition variables!



Spinlocks

A spinlock is a lock where the processor waits in a loop 
for the lock to become free
– Assumes lock will be held for a short time
– Used to protect the CPU scheduler and to implement locks

Spinlock::acquire() {
while (testAndSet(&lockValue) == BUSY)

;
}
Spinlock::release() {

lockValue = FREE;
memorybarrier();

}



How many spinlocks?

• Various data structures
– Queue of waiting threads on lock X

– Queue of waiting threads on lock Y

– List of threads ready to run

• One spinlock per kernel?
– Bottleneck!

• Instead:
– One spinlock per blocking lock

– One spinlock for the scheduler ready list
• Per-core ready list: one spinlock per core



What thread is currently running?

• Thread scheduler needs to find the TCB of the 
currently running thread
– To suspend and switch to a new thread
– To check if the current thread holds a lock before 

acquiring or releasing it

• On a uniprocessor, easy: just use a global
• On a multiprocessor, various methods:

– Compiler dedicates a register (e.g., r31 points to TCB 
running on the this CPU; each CPU has its own r31)

– If hardware has a special per-processor register, use it
– Fixed-size stacks: put a pointer to the TCB at the 

bottom of its stack
• Find it by masking the current stack pointer



Lock Implementation, Multiprocessor

Lock::acquire() { 
disableInterrupts();
spinLock.acquire();
if (value == BUSY) { 

waiting.add(myTCB);
suspend(&spinlock);

} else { 
value = BUSY; 

}
spinLock.release();

enableInterrupts(); 
}

Lock::release() { 
disableInterrupts();
spinLock.acquire();
if (!waiting.Empty()) { 

next = waiting.remove();    
scheduler->makeReady(next);

} else {
value = FREE; 

} 
spinLock.release();
enableInterrupts(); 

} 



Compare Implementations

Semaphore::P() { 
disableInterrupts();
spinLock.acquire();
if (value == 0) { 

waiting.add(myTCB);
suspend(&spinlock);

} else { 
value--; 

}
spinLock.release();

enableInterrupts(); 
}

Semaphore::V() { 
disableInterrupts();
spinLock.acquire();
if (!waiting.Empty()) { 

next = waiting.remove();    
scheduler->makeReady(next);

} else {
value++; 

} 
spinLock.release();
enableInterrupts(); 

} 



Lock Implementation, Multiprocessor

Sched::suspend(SpinLock ∗lock) { 
TCB ∗next; 

disableInterrupts();
schedSpinLock.acquire();
lock−>release();
myTCB−>state = WAITING;
next = readyList.remove();
thread_switch(myTCB, next);
myTCB−>state = RUNNING; 
schedSpinLock.release();
enableInterrupts(); 

} 

Sched::makeReady(TCB ∗thread) { 

disableInterrupts ();
schedSpinLock.acquire();
readyList.add(thread);
thread−>state = READY;
schedSpinLock.release();
enableInterrupts();

}



Lock Implementation, Linux

• Most locks are free most of the time
– Why?
– Linux implementation takes advantage of this fact

• Fast path
– If lock is FREE, and no one is waiting, two instructions to acquire 

the lock
– If no one is waiting, two instructions to release the lock

• Slow path
– If lock is BUSY or someone is waiting, use multiproc impl.

• User-level locks
– Fast path: acquire lock using test&set
– Slow path: system call to kernel, use kernel lock



Lock Implementation, Linux

struct mutex { 

/∗ 1: unlocked ; 0: locked; 
negative : locked, 
possible waiters ∗/ 

atomic_t count; 

spinlock_t wait_lock;

struct list_head wait_list;

}; 

// atomic decrement

// %eax is pointer to count 

lock decl (%eax) 

jns 1f // jump if not signed

// (if value is now 0) 

call slowpath_acquire

1: 



Semaphores

• Semaphore has a non-negative integer value
– P() atomically waits for value to become > 0, then 

decrements
– V() atomically increments value (waking up waiter if 

needed)

• Semaphores are like integers except:
– Only operations are P and V
– Operations are atomic

• If value is 1, two P’s will result in value 0 and one waiter

• Semaphores are useful for
– Unlocked wait: interrupt handler, fork/join



Semaphore Bounded Buffer

get() {

fullSlots.P();

mutex.P();

item = buf[front % MAX];

front++;

mutex.V();

emptySlots.V();

return item;

}

put(item) {

emptySlots.P();

mutex.P();

buf[last % MAX] = item;

last++;

mutex.V();

fullSlots.V();

}

Initially: front = last = 0; MAX is buffer capacity
mutex = 1; emptySlots = MAX; fullSlots = 0;



Implementing Condition Variables 
using Semaphores (Take 1)

wait(lock) { 

lock.release(); 

semaphore.P(); 

lock.acquire();

}

signal() {

semaphore.V();

}



Implementing Condition Variables
using Semaphores (Take 2)

wait(lock) { 
lock.release(); 
semaphore.P(); 
lock.acquire();

}
signal() {

if (semaphore is not empty)
semaphore.V();

}



Implementing Condition Variables
using Semaphores (Take 3)

wait(lock) { 
semaphore = new Semaphore;
queue.Append(semaphore);   // queue of waiting threads
lock.release(); 
semaphore.P(); 
lock.acquire();

}
signal() {

if (!queue.Empty()) {
semaphore = queue.Remove();
semaphore.V(); // wake up waiter

}
}



Communicating Sequential Processes
(CSP/Google Go)

• A thread per shared object

– Only thread allowed to touch object’s data

– To call a method on the object, send thread a 
message with method name, arguments

– Thread waits in a loop, get msg, do operation 

• No memory races!



Example: Bounded Buffer

get() {
lock.acquire();
while (front == tail) {

empty.wait(lock);
}
item = buf[front % MAX];
front++;
full.signal(lock);
lock.release();
return item;

}

put(item) {
lock.acquire();
while ((tail – front) == MAX) {

full.wait(lock);
}
buf[tail % MAX] = item;
tail++;
empty.signal(lock);
lock.release();

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables



Bounded Buffer (CSP)

while (cmd = getNext()) {
if (cmd == GET) {

if (front < tail) {
// do get
// send reply
// if pending put, do it 
// and send reply

} else
// queue get operation

}

} else { // cmd == PUT
if ((tail – front) < MAX) {

// do put
// send reply
// if pending get, do it 
// and send reply

} else
// queue put operation

}



Locks/CVs vs. CSP

• Create a lock on shared data
= create a single thread to operate on data

• Call a method on a shared object
= send a message/wait for reply

• Wait for a condition
= queue an operation that can’t be completed just 

yet

• Signal a condition
= perform a queued operation, now enabled



Remember the rules

• Use consistent structure

• Always use locks and condition variables

• Always acquire lock at beginning of procedure, 
release at end

• Always hold lock when using a condition 
variable

• Always wait in while loop

• Never spin in sleep()


