Concurrency

Motivation

e Operating systems (and application programs)
often need to be able to handle multiple things
happening at the same time

— Process execution, interrupts, background tasks,
system maintenance

* Asingle human is not very good at keeping track
of multiple things happening simultaneously

— A horde of people are
* Threads are an abstraction to help bridge this
gap

Why Concurrency?

Servers

— Multiple connections handled simultaneously
Parallel programs

— To achieve better performance

Programs with user interfaces

— To achieve user responsiveness while doing
computation

Network and disk bound programs
— To hide network/disk latency

Déja vu?

* Didn’t we learn all about concurrency in CSE
332/3337?

— More practice
* Realistic examples, especially in the project

— Design patterns and pitfalls
* Methodology for writing correct concurrent code

— Implementation
e How do threads work at the machine level?

— CPU scheduling
* If multiple threads to run, which do we do first?

Definitions

 Athread is asingle execution sequence that
represents a separately schedulable task

— Single execution sequence: familiar programming
model

— Separately schedulable: OS can run or suspend a
thread at any time

* Protection is an orthogonal concept

— Can have one or many threads per protection
domain

Threads in the Kernel and at User-Level

e Multi-threaded kernel

— multiple threads, sharing kernel data structures,
capable of using privileged instructions

* Multiprocess kernel

— Multiple single-threaded processes

— System calls access shared kernel data structures
* Multiple multi-threaded user processes

— Each with multiple threads, sharing same data
structures, isolated from other user processes

* |Infinite number of processors

Thread Abstraction

* Threads execute with variable speed

— Programs must be designed to work with any schedule

ThreadESE:IE'E'B

Pracessors ;

F"TEIQF-E.I'TIFI'IEF Abgtracticn

1

-

L3

5

Fhiyaical Reality

Rumning Heady

Threads Threads

Programmer vs.

Programmer’'s Possibla
View Exacution
#1
| :.I] '|: N o= :.I] '|:
!- m ? . X !- m ? . X

r=® ® Oy, r=x ® fy;

Passiblae
Exacution
#2

E=x = 1

Thaepd i yapended.

Dther threadiw) run,
Thaepsd & resumed,

Processor View

Fogsible

Execubon
#3

== x k1

¥y bR
Thread is suspended
Drthar thresas] run
Thread is resurmed

Possible Executions

One Exacution

Thiead 1
Thiead ?
Thiwad]

Ancther Exacufion

Thiecd 1

Thread 2

Thread 3]

Another Execution

Theead 1
Theead 2
Theesd 3

Thread Operations

thread create(thread, func, args)
— Create a new thread to run func(args)

thread yield()

— Relinquish processor voluntarily

thread_join(thread)

— In parent, wait for forked thread to exit, then
return

thread exit
— Quit thread and clean up, wake up joiner if any

Example: threadHello

#define NTHREADS 10
thread _t threads[NTHREADS];
main() {
for (i=0; i < NTHREADS; i++) thread create(&threads|i], &go, i);
for (i = 0; i < NTHREADS; i++) {
exitValue = thread_join(threads]i]);
printf("Thread %d returned with %Id\n", i, exitValue);

}
printf("Main thread done.\n");

}

void go (int n) {
printf("Hello from thread %d\n", n);
thread_exit(100 + n);
// REACHED?

}

threadHello: Example Output

bash-3.2$./threadHello

* Why must “thread returned” zello from thread o

Hello from thread 1

print in order? e e 1
. . Hello from thread 4
° What IS maxXximum # Of Thread 1 returned 101

Hello from thread 5
Hello from thread

threads running when thread 1eiio from thread

Hello from thread

5 prlntS he”O? Hello from thread

Hello from thread 9
Thread 2 returned 102

~] 00 Oy N

¢ Mlnlmum? Thread 3 returned 103
Thread 4 returned 104
Thread 5 returned 105
Thread 6 returned 106
Thread 7 returned 107
Thread 8 returned 108

Thread 9 returned 109
Main thread done.

Fork/Join Concurrency

 Threads can create children, and wait for their
completion

* Data only shared before fork/after join

 Examples:

— Web server: fork a new thread for every new
connection

* As long as the threads are completely independent
— Merge sort

— Parallel memory copy

bzero with fork/join concurrency

void blockzero (unsigned char *p, int length) {
inti, j;
thread_t threads[NTHREADS];
struct bzeroparams params[NTHREADS];

// For simplicity, assumes length is divisible by NTHREADS.
for (i=0,j=0; i< NTHREADS; i++, j += length/NTHREADS) {
paramsli].buffer = p + i * length/NTHREADS;
paramsli].length = length/NTHREADS;
thread_create_p(&(threads]i]), &go, ¶msli]);
}
for (i=0; i < NTHREADS; i++) {
thread_join(threads]i]);
}

Thread Data Structures

Sharad
State

Code

Global
‘Wariables

Heap

Thread 1's
Far-Thread State

Thread Coniral
Block (TCH)
Stach
Infaimatin
avesd
Heqisters

Thaea-l
Metadata

Stack

Thread Z's
Far-Thread State

Thread Control
Block (TCH)
Srach
liii Fni Tt D iy
s
Heqgisters

Thread
Metadara

Stack

Thread Lifecycle

Echepiiler
Thosad Crsaion. ol e A Theasd Exit —
e —— =) e e e e e e e e e [] =
sthread_creals|) ;1a-:|'l1-|l-l':54:hb:||.l athread_asxill]
re ; el

= Luspends Thread
i sthread _yield(}

Evenit Doours i Thread Waits Jar Exenl

Ctbar Theead Calls S sthread _join(]
sthread_jain{]l - -

Implementing Threads: Roadmap

e Kernel threads
— Thread abstraction only available to kernel

— To the kernel, a kernel thread and a single
threaded user process look quite similar

 Multithreaded processes using kernel threads
(Linux, MacOS)

— Kernel thread operations available via syscall

* User-level threads
— Thread operations without system calls

Multithreaded OS Kernel

K e

Coda Kerrdrl Teraad 1 Kemel Theead @ Banel Theead 3 Procase 1 Process F
Glzbals e | 2 | TCH 3 PLE 2
Eick Etack Simok Elack Stack
Process 1 PFrocissy ¥
Uszar-Level Processes Thieas Theeas
Srack | Srack
Cofe | Cofe
Glohals | Glahals
Keap | Heap

Implementing threads

* Thread fork(func, args)
— Allocate thread control block
— Allocate stack
— Build stack frame for base of stack (stub)
— Put func, args on stack
— Put thread on ready list
— Will run sometime later (maybe right away!)

e stub(func, args)
— Call (*func)(args)
— On return, call thread_exit()

Thread Stack

 What if a thread puts too many frames on its
stack?

— What happens in Java?
— What happens in the Linux kernel?

— What happens in xk?

— What should happen?

Thread Context Switch

* Voluntary

— thread_yield

— thread_join (if child is not done yet)
* |nvoluntary

— Interrupt or exception
— Some other thread is higher priority

Voluntary thread context switch

Save registers on old stack
Switch to new stack, new thread
Restore registers from new stack
Return

Exactly the same with kernel threads or user
threads

0S/161 switchframe_switch

/* a0: old thread stack pointer
* al: new thread stack pointer */

/* Allocate stack space for 10 registers. */
addi sp, sp, -40

/* Save the registers */
sw ra, 36(sp)
sw gp, 32(sp)
sw s8, 28(sp)
swW s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, O(sp)

/* Store old stack pointer in old thread */
sw sp, 0(a0)

/* Get new stack pointer from new thread */

lw sp, 0(al)
nop /* delay slot for load */

/* Now, restore the registers */

lw s0, O(sp)
lw s1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
lw s5, 20(sp)
lw s6, 24(sp)
lw 8, 28(sp)
lw gp, 32(sp)
lw ra, 36(sp)
nop /* delay slot for load */

/* and return. */
jra
addisp, sp,40 /*in delayslot */

Xx86 switch threads

Save caller’s register state

NOTE: %eax, etc. are ephemeral
pushl %ebx

pushl %ebp

pushl %esi

pushl %edi

Get offsetof (struct thread, stack)
mov thread_stack_ofs, %edx

Save current stack pointer to old
thread's stack, if any.

movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Change stack pointer to new
thread's stack

this also changes currentThread
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi

popl %esi

popl %ebp

popl %ebx

ret

A Subtlety

 Thread create puts new thread on ready list
* When it first runs, some thread calls
switchframe
— Saves old thread state to stack

— Restores new thread state from stack

e Set up new thread’s stack as if it had saved its
state in switchframe

— “returns” to stub at base of stack to run func

Two Threads Call Yield

Thread 1'% instructions

“return” from thread swibch
imber stub

call go

call thread yield

chioese another thread

call thread swilch

save thread 1 state o TCH

load thread 2 state

refum from thread _geekch
refum from thread_yield
call Thresd _wald

chioese another thread
call thread_swilch

Thread 2's instruchons

“return”™ tromn threasd swilch

it Shin
call go
call thread_yialg
choose another thread
call thread_gaitch
gsave thread 2 state to TCE
boad thiread 1 state

Processor's instructions

“return” from thread swilch
inte =tub

call go

call thread yield

chisose another thread

call thread swilch

save thread 1 state to TCB

load thread 2 state

“return” from thread swilch
it S0k

call ge

call thragd_yield

Chosose another thread

call thraad_swiich

save thread 2 state to TOCH

load thread 1 skate

return froom thread gaitch

return from thread yiald

call thread_yiekd

chisose another thread

call thread_swiich

Faster Thread/Process Switch

 What happens on a timer (or other) interrupt?
— Interrupt handler saves state of interrupted thread
— Decides to run a new thread
— Throw away current state of interrupt handler!
— Instead, set saved stack pointer to trapframe
— Restore state of new thread

— On resume, pops trapframe to restore interrupted
thread

Multithreaded User Processes (Take 1)

e User thread = kernel thread (Linux, MacQOS)

— System calls for thread fork, join, exit (and lock,
unlock,...)

— Kernel does context switch

— Simple, but a lot of transitions between user and
kernel mode

Kearmsal|

Multithreaded User Processes
(Take 1)

Kirrsal Thraad 1 Kermel Thiead 2 Eamel Theead 3

2

Elack

o=z |

>

J

KT

Pracais 1

PCE 1

e 14] [ere] |

thack

Sl

stk Black

Paissees 2

Elnck

FCH 2

TCH A |

TCE 2B

ik

Usar-Laval Procasses

Proasane 1
Thraad & Thiead B

505

Process &
Theeag h Thread B

5

2

| Sl || Sk

Clohals

Hean

| Mack || Shack |
Cade

Code

Glabals

Heap

Multithreaded User Processes (Take 2)

* Green threads (early Java)
— User-level library, within a single-threaded process
— Library does thread context switch

— Preemption via upcall/UNIX signal on timer
interrupt

— Use multiple processes for parallelism
* Shared memory region mapped into each process

Multithreaded User Processes (Take 3)

e Scheduler activations (Windows 8)
— Kernel allocates processors to user-level library
— Thread library implements context switch
— Thread library decides what thread to run next
* Upcall whenever kernel needs a user-level
scheduling decision
* Process assigned a new processor
* Processor removed from process
e System call blocks in kernel

Question

* Compare event-driven programming with
multithreaded concurrency. Which is better in
which circumstances, and why?

