
Module 3
The Programming Interface

CSE 451 1

CSE 451 2

Summary Picture 1

Summary Picture 2

CSE 451 3

Address
Space

Registers

Other Meta Data
process id

parent process id
owner id
group id

open file table
...

Memory or
Disk

PCB or
CPU

PCB
(kernel memory)

N.B. We’re assuming one thread per process at this point.

Module Main Points

• Creating and managing processes

– fork, exec, wait

• Performing I/O

– open, read, write, close

• Communicating between processes

– pipe, dup, select, connect

• Example: implementing a shell

CSE 451 4

Shell

• A shell is a job control system
– Allows programmer to create and manage a set of

programs to do some task

– Windows, MacOS, Linux all have shells

– (The desktop is also a job control system)

• Example: to compile a C program
cc –c sourcefile1.c # compile but don’t link

cc –c sourcefile2.c

ln –o program sourcefile1.o sourcefile2.o # link

CSE 451 5

Question

• The shell runs at user-level. Can user level
code create a new process?

• What system calls does the shell make to run
each of the programs?
– Ex: cc, ln

• (How does the shell find the cc and ln
executable files?)

CSE 451 6

Windows CreateProcess

• System call to create a new process to run a
program
– Create and initialize the process control block (PCB) in

the kernel
– Create and initialize a new address space
– Load the program into the address space
– Copy arguments into memory in the address space
– Initialize the hardware context to start execution at

``start'’
– Inform the scheduler that the new process is ready to

run

CSE 451 7

Windows CreateProcess API
(simplified)

if (!CreateProcess(
NULL, // No module name (use command line)
argv[1], // Command line
NULL, // Process handle not inheritable
NULL, // Thread handle not inheritable
FALSE, // Set handle inheritance to FALSE
0, // No creation flags
NULL, // Use parent's environment block
NULL, // Use parent's starting directory
&si, // Pointer to STARTUPINFO structure
&pi) // Pointer to PROCESS_INFORMATION structure

)

CSE 451 8

UNIX Process Management

• fork – system call to create a copy of the
current process, and start it running

– No arguments!

• exec – system call to change the program
being run by the current process

– What are the arguments?

CSE 451 9

UNIX Process Management

• wait – system call to wait for a process to
finish

– Arguments?

• signal – system call to send a notification
(event) to another process

– Arguments?

CSE 451 10

UNIX Process Management

CSE 451 11

shell

shell

shell

cc

Question: What does this code print?

int child_pid = fork();

if (child_pid == 0) { // I'm the child process

printf("I am process #%d\n", getpid());

return 0;

} else { // I'm the parent process

printf("I am parent of process #%d\n", child_pid);

return 0;

}

CSE 451 12

Question: What is wrong with this code?

Questions

• Can UNIX fork() return an error? Why?

• Can UNIX exec() return an error? Why?

• Can UNIX wait() ever return immediately?
Why?

CSE 451 13

Implementing UNIX fork

Steps to implement UNIX fork
– Create and initialize the process control block (PCB) in

the kernel
• Initialize using what data?

– Inherit the execution context of the parent (e.g., any
open files)

– Create a new address space

– Initialize the address space with a copy of the entire
contents of the address space of the parent

– Inform the scheduler that the new process is ready to
run

CSE 451 14

Implementing UNIX exec

• Steps to implement UNIX fork

– Load the program into the current address space

– Copy arguments into memory in the address
space

– Initialize the hardware context to start execution
at ``start‘’ (the “entry point”)

CSE 451 15

Topic 2: UNIX I/O

• Uniformity
– All operations on all files, devices use the same set

of system calls: open, close, read, write
• Files (file systems), devices, sockets, pipes

• Open before use
– Open returns a handle (file descriptor) for use in

later calls on the file
• Open files are part of process meta-data (in PCB)

– Why?

CSE 451 16

UNIX I/O

• Byte-oriented
– read/write byte buffer

– Example alternative: read/write line of text

• Kernel-buffered read/write
– kernel may read more bytes than asked for

– kernel may delay writing bytes to device

• Explicit close
– To garbage collect the open file descriptor

CSE 451 17

Aside: (UNIX) Open Files

• A file handle is an integer

– An index into the open file table

• There file handles are special:

– 0: stdin

– 1: stdout

– 2: stderr

• We’ll talk about how they’re initialized in a
bit...

CSE 451 18

UNIX File System Interface

• UNIX file open is a Swiss Army knife:
– Open the file, return file descriptor

– Options:
• if file doesn’t exist, return an error

• If file doesn’t exist, create file and open it

• If file does exist, return an error

• If file does exist, open file

• If file exists but isn’t empty, nix it then open

• If file exists but isn’t empty, return an error

• …

CSE 451 19

Interface Design Question

• Why not separate syscalls for
open/create/exists?

if (!exists(name))

create(name); // can create fail?

fd = open(name); // does the file exist?

CSE 451 20

Implementing a Shell
char *prog, **args;

int child_pid;

// Read and parse the input a line at a time

while (readAndParseCmdLine(&prog, &args)) {

child_pid = fork(); // create a child process

if (child_pid == 0) {

exec(prog, args); // I'm the child process. Run program

// NOT REACHED

} else {

wait(child_pid); // I'm the parent, wait for child

return 0;

}

}
CSE 451 21

Shell Input/Output Redirection

while (readAndParseCmdLine(&prog, &args)) {

child_pid = fork(); // create a child process

if (child_pid == 0) {

--- open inputFile as file descriptor 0 (stdin) ---

exec(prog, args); // I'm the child process. Run program

// NOT REACHED

} else {

wait(child_pid); // I'm the parent, wait for child

return 0;

}

}

CSE 451 22

$./prog <inputFile

Other Shell Operations

• ./prog >outfile

• ./prog &

• ./prog >>logfile

• ./prog >outfile 2>&1

CSE 451 23

Topic 3: Interprocess Communicaiton

• Suppose processes want to share information

– producer-consumer

• output of one process is input to another (running at
the same time)

– client-server

• general message passing between two processes

– file system

• tends to be producer consumer, but no need for
simultaneous execution

CSE 451 24

Producer-consumer Communiction

• UNIX pipes

– gcc test.c 2>&1 | grep –i error

• What is a “pipe”

– Where is it located?

• How is the producer connected to the pipe?

– The consumer?

CSE 451 25

