
Module 3
The Programming Interface
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Summary Picture 2
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N.B.  We’re assuming one thread per process at this point.



Module Main Points

• Creating and managing processes

– fork, exec, wait

• Performing I/O

– open, read, write, close

• Communicating between processes

– pipe, dup, select, connect

• Example: implementing a shell
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Shell

• A shell is a job control system 
– Allows programmer to create and manage a set of 

programs to do some task

– Windows, MacOS, Linux all have shells

– (The desktop is also a job control system)

• Example: to compile a C program
cc –c sourcefile1.c        # compile but don’t link

cc –c sourcefile2.c

ln –o program sourcefile1.o sourcefile2.o   # link
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Question

• The shell runs at user-level.  Can user level 
code create a new process?

• What system calls does the shell make to run 
each of the programs?
– Ex: cc, ln

• (How does the shell find the cc and ln 
executable files?)
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Windows CreateProcess

• System call to create a new process to run a 
program
– Create and initialize the process control block (PCB) in 

the kernel
– Create and initialize a new address space
– Load the program into the address space
– Copy arguments into memory in the address space
– Initialize the hardware context to start execution at 

``start'’
– Inform the scheduler that the new process is ready to 

run
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Windows CreateProcess API
(simplified)

if (!CreateProcess(
NULL,           // No module name (use command line)
argv[1],        // Command line
NULL,           // Process handle not inheritable
NULL,           // Thread handle not inheritable
FALSE,          // Set handle inheritance to FALSE
0,                  // No creation flags
NULL,           // Use parent's environment block
NULL,           // Use parent's starting directory
&si,              // Pointer to STARTUPINFO structure
&pi )            // Pointer to PROCESS_INFORMATION structure

)
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UNIX Process Management

• fork – system call to create a copy of the 
current process, and start it running

– No arguments!

• exec – system call to change the program 
being run by the current process

– What are the arguments?
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UNIX Process Management

• wait – system call to wait for a process to 
finish

– Arguments?

• signal – system call to send a notification 
(event) to another process

– Arguments?
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UNIX Process Management
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Question: What does this code print?

int child_pid = fork();

if (child_pid == 0) {           // I'm the child process

printf("I am process #%d\n", getpid());

return 0;

} else {                        // I'm the parent process

printf("I am parent of process #%d\n", child_pid);

return 0;

}
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Question: What is wrong with this code?



Questions

• Can UNIX fork() return an error?  Why?

• Can UNIX exec() return an error?  Why?

• Can UNIX wait() ever return immediately?  
Why?
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Implementing UNIX fork

Steps to implement UNIX fork
– Create and initialize the process control block (PCB) in 

the kernel
• Initialize using what data?

– Inherit the execution context of the parent (e.g., any 
open files)

– Create a new address space

– Initialize the address space with a copy of the entire 
contents of the address space of the parent

– Inform the scheduler that the new process is ready to 
run
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Implementing UNIX exec

• Steps to implement UNIX fork

– Load the program into the current address space

– Copy arguments into memory in the address 
space

– Initialize the hardware context to start execution 
at ``start‘’ (the “entry point”)

CSE 451 15



Topic 2: UNIX I/O

• Uniformity
– All operations on all files, devices use the same set 

of system calls: open, close, read, write
• Files (file systems), devices, sockets, pipes

• Open before use
– Open returns a handle (file descriptor) for use in 

later calls on the file
• Open files are part of process meta-data (in PCB)

– Why?
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UNIX I/O

• Byte-oriented
– read/write byte buffer

– Example alternative: read/write line of text

• Kernel-buffered read/write
– kernel may read more bytes than asked for

– kernel may delay writing bytes to device

• Explicit close
– To garbage collect the open file descriptor
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Aside: (UNIX) Open Files

• A file handle is an integer

– An index into the open file table

• There file handles are special:

– 0: stdin

– 1: stdout

– 2: stderr

• We’ll talk about how they’re initialized in a 
bit...
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UNIX File System Interface

• UNIX file open is a Swiss Army knife:
– Open the file, return file descriptor

– Options: 
• if file doesn’t exist, return an error

• If file doesn’t exist, create file and open it

• If file does exist, return an error

• If file does exist, open file

• If file exists but isn’t empty, nix it then open

• If file exists but isn’t empty, return an error

• …
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Interface Design Question

• Why not separate syscalls for 
open/create/exists?

if (!exists(name))

create(name);   // can create fail?

fd = open(name);   // does the file exist?
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Implementing a Shell
char *prog, **args;

int child_pid;

// Read and parse the input a line at a time

while (readAndParseCmdLine(&prog, &args)) {   

child_pid = fork();      // create a child process

if (child_pid == 0) {

exec(prog, args);       // I'm the child process.  Run program 

// NOT REACHED

} else {

wait(child_pid);       // I'm the parent, wait for child

return 0;

}

}
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Shell Input/Output Redirection

while (readAndParseCmdLine(&prog, &args)) {   

child_pid = fork();      // create a child process

if (child_pid == 0) {

--- open inputFile as file descriptor 0 (stdin) ---

exec(prog, args);       // I'm the child process.  Run program 

// NOT REACHED

} else {

wait(child_pid);       // I'm the parent, wait for child

return 0;

}

}
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$ ./prog <inputFile



Other Shell Operations

• ./prog >outfile

• ./prog &

• ./prog >>logfile

• ./prog >outfile 2>&1
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Topic 3: Interprocess Communicaiton

• Suppose processes want to share information

– producer-consumer

• output of one process is input to another (running at 
the same time)

– client-server

• general message passing between two processes

– file system

• tends to be producer consumer, but no need for 
simultaneous execution
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Producer-consumer Communiction

• UNIX pipes

– gcc test.c 2>&1 | grep –i error

• What is a “pipe”

– Where is it located?

• How is the producer connected to the pipe?

– The consumer?
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