CSE 451 Module 2
The Kernel Abstraction

CCCCCCCCCCCCC

Debugging as Engineering

 Much of your time in this course will be spent
debugging

— In industry, 50% of software dev is debugging
— Even more for kernel development

* How do you reduce time spent debugging?
— Produce working code with smallest effort

* Use best practices
— Always walk through your code line by line
— Module tests — narrow scope of where problem is

— Develop code in stages, with dummy replacements for
later functionality

CSE 451 Module 2 2

Debugging as Science

* Understanding -> design -> code
— not the opposite

* Form a hypothesis that explains the bug

— Does the bug you hypothesize explain the
behavior you're seeing?

— Which tests work, which don’t. Why?
— Add tests to narrow possible outcomes

 Form a hypothesis of what will happen when
you change the code before you run the
changed code

ABET

You can’t debug effectively without this:

b. Ability to designh and conduct experiments,
analyze and interpret data.

Booting

(1)
BIGS comies
beolkaader

(2]
Brsrlkagder
capas 05 bereal

(3]
G kel copies
apn apglicatiom

CSE 451 Module 2

Physical
Mamary

FCc

Bralizader
nalnychimeg
and data

0% keresl
nalmyciime
and data

Lagin app
instructons
and data

Device Interrupts

* OS kernel needs to communicate with physical
devices

* Devices operate asynchronously from the CPU
— Polling: Kernel waits until 1/0 is done
— Interrupts: Kernel can do other work in the meantime

* Device access to memory
— Programmed 1/O: CPU reads and writes to device
— Direct memory access (DMA) by device

— Buffer descriptor: sequence of DMA’s
* E.g., packet header and packet body

— Queue of buffer descriptors
* Buffer descriptor itself is DMA’ed

Device Interrupts

* How do device interrupts work?

— Where does the CPU run after an interrupt?
— What is the interrupt handler written in? C? Java?

— What stack does it use?

— Is the work the CPU had been doing before the
interrupt lost forever?

— If not, how does the CPU know how to resume
that work?

CSE 451 Module 2

Challenge: Protection

e How do we execute code with restricted
privileges?

— Either because the code is buggy or if it might be
malicious

* Some examples:
— A script running in a web browser
— A program you just downloaded off the Internet

— A program you just wrote that you haven’t tested
yet

CSE 451 Module 2

& Edits

Gaurge

A Problem

Cormpller

FTEIT |

Oparating
Exacutable
mage: Systam Copy |
nstrugtiang [———
ard Oata

Machine
Ingliucliens

CSE 451 Module 2

Process

Operating
System
Kernel

Main Points

* Process conce pt

— A process is the OS abstraction for executing a
program with limited privileges

* Dual-mode operation: user vs. kernel

— Kernel-mode: execute with complete privileges
— User-mode: execute with fewer privileges

e Safe control transfer
— How do we switch from one mode to the other?

Process Abstraction

* Process: an instance of a program, running
with limited rights

— Thread: a sequence of instructions within a
process

» Potentially many threads per process (for now 1:1)

— Address space: set of rights of a process
* Memory that the process can access

e Other permissions the process has (e.g., which system
calls it can make, what files it can access)

CSE 451 Module 2

11

Thought Experiment

* How can we implement execution with limited
privilege?
— Execute each program instruction in a simulator
— If the instruction is permitted, do the instruction
— Otherwise, stop the process
— Basic model in Javascript and other interpreted

languages

* How do we go faster?

— Run the unprivileged code directly on the CPU!

CSE 451 Module 2 12

Hardware Support:
Dual-Mode Operation

Kernel mode
— Execution with the full privileges of the hardware

— Read/write to any memory, access any I/O device,
read/write any disk sector, send/read any packet

User mode
— Limited privileges

— Only those granted by the operating system kernel

On the x86, mode stored in EFLAGS register
On the MIPS, mode in the status register

CSE 451 Module 2

13

A Model of a CPU

Branch Address
o a I:Fu
................ | SGalpet BT --I.!E“IPE, Frapam | |‘estuctisns
Coener Festzh ared
Exacuie |---

CSE 451 Module 2

A CPU with Dual-Mode Operation

Branch Address

. CPU
o | caipet o HE'HF"'I:' Frogram | . |mstrustins
Handler PC Copnier Fedzh ard
o| ExECiie i
—_ Mew Moda
M n e e e w w H:d!' -

T 1T T T T N —————

opcada
CSE 451 Manullll:e:Z

Hardware Support:
Dual-Mode Operation

Privileged instructions
— Available to kernel
— Not available to user code

Limits on memory accesses

— To prevent user code from overwriting the kernel
Timer

— To regain control from a user program in a loop

Safe way to switch from user mode to kernel
mode, and vice versa

CSE 451 Module 2

16

Privileged instructions

 Examples?

 What should happen if a user program
attempts to execute a privileged instruction?

CSE 451 Module 2

17

Question

* For a “Hello world” program, the kernel must
copy the string from the user program
memory into the screen memory.

 Why not allow the application to write directly
to the screen’s buffer memory?

Simple Memory Protection

Pr oo g

Physical
Memaory

e o pos
Easc
r e e .qé
Baund
i i
....-.@...........,Fﬁlﬂ
cSE 451 Module 2 ERCEpHDN

19

Towards Virtual Addresses

* Problems with base and bounds?

CSE 451 Module 2

20

Virtual Addresses

 Translation Virtual Addresses Physical
. [Process Layout) Mamory
done in
hardware, Cods
using a table Data cods
* Table set up by Heap Jas
operating : Heap
system kernel - Btack
Stack

CSE 451 Module 2

Example

int staticVar=0; // a static variable
main() {
staticVar +=1;
sleep(10); // sleep for x seconds
printf ("static address: %x, value: %d\n", &staticVar,
staticVar);

}

What happens if we run two instances of this program at
the same time?

What if we took the address of a procedure local variable
in two copies of the same program running at the same
time?

Question

 With an object-oriented language and
compiler, only an object’s methods can access
the internal data inside an object. If the
operating system only ran programs written in
that language, would it still need hardware
memory address protection?

 What if the contents of every object were
encrypted except when its method was
running, including the OS?

Hardware Timer

 Hardware device that periodically interrupts
the processor
— Returns control to the kernel handler
— Interrupt frequency set by the kernel
* Not by user code!

— Interrupts can be temporarily deferred
* Not by user code!

* Interrupt deferral crucial for implementing mutual
exclusion

CSE 451 Module 2 24

Mode Switch

* From user mode to kernel mode
— Interrupts
* Triggered by timer and 1/O devices

— Exceptions
* Triggered by unexpected program behavior
* Or malicious behavior!

— System calls (aka protected procedure call)

* Request by program for kernel to do some operation on
its behalf

* Only limited # of very carefully coded entry points

CSE 451 Module 2 25

Question

 Examples of exceptions

 Examples of system calls

CSE 451 Module 2

26

Mode Switch

* From kernel mode to user mode

— New process/new thread start
* Jump to first instruction in program/thread

— Return from interrupt, exception, system call

* Resume suspended execution

— Process/thread context switch

* Resume some other process

— User-level upcall (UNIX signal)

* Asynchronous notification to user program

CSE 451 Module 2

27

How do we take interrupts safely?

* |nterrupt vector

— Limited number of entry points into kernel

e Atomic transfer of control

— Single instruction to change:
* Program counter
 Stack pointer
* Memory protection
* Kernel/user mode

* Transparent restartable execution

— User program does not know interrupt occurred

CSE 451 Module 2 28

Interrupt Vector

* Table set up by OS kernel; pointers to code to
run on different events

Frocessor Intermpt
Regster Vactor

-

BE— h.ﬂnzlluTlrnErll'll:'ﬁ'rllF'“::' |

]

P handlaDivideByZarol) |

1

==t handinSystamCali(] {

CSE 451 Modlile 2 29

Interrupt Stack

* Per-processor, located in kernel (not user)
memory

— Usually a process/thread has both: kernel and
user stack

* Why can’t the interrupt handler run on the
stack of the interrupted user process?

CSE 451 Module 2

30

Interrupt Stack

Fannieg Ready o Ren Wanng far b
Cesall
i i
UEEF ElEﬂ"l Prioc 2 Frac? Frac?
Proci Fraci Fraci
Bain Bain B ain
oy
L' Oresr
Tog Hall
Kernal Stack syacall
Hangler
= il
Les=r CPU L= CPU
slalE alaie
—

CSE 451 Module 2

Interrupt Masking

* |Interrupt handler runs with interrupts off
— Re-enabled when interrupt completes

* OS kernel can also turn interrupts off
— Eg., when determining the next process/thread to run

— On x86

e CLI: disable interrrupts
e STI: enable interrupts
* Only applies to the current CPU (on a multicore)

 We'll need this to implement synchronization in
chapter 5

CSE 451 Module 2 32

Interrupt Handlers

* Non-blocking, run to completion

— Minimum necessary to allow device to take next
interrupt

— Any waiting must be limited duration
— Wake up other threads to do any real work

* Linux: semaphore

e Rest of device driver runs as a kernel thread

CSE 451 Module 2

33

Case Study: MIPS Interrupt/Trap

Two entry points: TLB miss handler, everything else

Save type: syscall, exception, interrupt
— And which type of interrupt/exception

Save program counter: where to resume

Save old mode, interruptable bits to status register
Set mode bit to kernel

Set interrupts disabled

For memory faults
— Save virtual address and virtual page

Jump to general exception handler

CSE 451 Module 2 34

Case Study: x86 Interrupt

Save current stack pointer
Save current program counter

Save current processor status word (condition
codes)

Switch to kernel stack; put SP, PC, PSW on stack
Switch to kernel mode

Vector through interrupt table

Interrupt handler saves registers it might clobber

CSE 451 Module 2 35

Igar-layel Procass

f o I::l-l P IR—— .

)

whilag... | 4§

i K+
¥ o= ¥-I
!

Ugar Stack

Before Interrupt

Hegisters

EE ESF

CE EFP

EFLALE

Db Fesginlors:
Eax, ERX,

CSE 451 Module 2

Kermal

handlar(} §
pushad

Interrupt
Stack

36

During Interrupt

Usar-lavel Procass Hegisters Kemal
o L = e nandlar)
i = K+l
v = ez CE EF }
! EFLAGS
: : Interrupt
User Stack olfier tegisters: Stack
EAX, EBX, '
P .
Errar
... E":.
~| s
EFLAGS
... Eﬁp
CSE 451 Module 2 i 55 37

After Interrupt

Usar-lavel Procass Heglstars Kermeal
whilaf...} { - B pushad
= K+ o
CE EP
¥ o= eI b
] ! EFLAGS
: Interrupt
Stack olhier ixgiaters: Stack
Eax, ERX. :
_ ¥ al
Fmssmasmanmas . : EBX HHI“HI

s EAX
ESP
55

Errar
-- EIF
£5

EFLALGS
ESP

.................. ESEA51 Mo be D= = nmas

S

At end of handler

* Handler restores saved registers

e Atomically return to interrupted
process/thread

— Restore program counter

— Restore program stack

— Restore processor status word/condition codes
— Switch to user mode

CSE 451 Module 2

39

Upcall: User-level event delivery

* Notify user process of some event that needs
to be handled right away

— Time expiration
* Real-time user interface
* Time-slice for user-level thread manager

— Interrupt delivery for VM player
— Asynchronous |/O completion (async/await)

* AKA UNIX signal

CSE 451 Module 2 40

Upcalls vs Interrupts

Signal handlers = interrupt vector

Signal stack = interrupt stack

Automatic save/restore registers = transparent

resume

Signal masking: signals disabled while in signal

handler

CSE 451 Module 2

41

E=|||-I-I;|

Stack

Upcall: Before

Program Countar

Stack Polnter

CSE 451 Module 2

signal_handler(} {

}

Signal
Stack

42

Upcall: During

..... + 5|!;||"|=|_|1ﬂ|1'!|'l'r|.| 1

F'Fﬂ-?'ﬂm Coumtar - J

Shynal
. Stack Foilnter Stack

Sreed
Hegpadans:

P

PL.

CSE 451 Module 2 -

A TRLIRENS e oRIFRl

o L B L AT RN

Datatases Ward Pracassing

Wab Bramaers

Emai

Panagie
0% Likrary

Syslem Cal
IR

Partasie Cgeraling
Spalam Egmel

Ak GL FrewniP

Kb 100Mbp T Gigs Eeer

B0 17 albigincsE 451 §alule 2

IDE

44

User Program

main ¢ |
file_opaniargl, argZ},

)

m. e

Uzar Stub

lile _ocpenjarg. arg2) |
push eEYSCALL _QFERN
frap
raturm

Kemal

file_openiargi, argd] §
i do oparalcn

)

@@

-

(2} Karnal Stub
Feardwar Trap

e + file_open_handlar{) |

iT Caopy el

(f Trom usar maman

if chaok argumants

{5} e _ocpenjarg1, arg2)
i¥ popy reium value

b U Sar oy
return;

CSE 451 Module 2] 45

Kernel System Call Handler

Locate arguments

— In registers or on user stack
— Translate user addresses into kernel addresses

Copy arguments
— From user memory into kernel memory
— Protect kernel from malicious code evading checks

Validate arguments
— Protect kernel from errors in user code

Copy results back into user memory
— Translate kernel addresses into user addresses

CSE 451 Module 2

46

]

Sarvar 'y
| Fe— Parse Fiecuest Reply | Format Baply
: | Butter | 7 - | Bulfer -
i i - .
1. 4. 3 E 1@
Hetwork Eamel Copy File lead Kerral Capy Wnta and Ligy
Gackel Read 1 ; H I K o | BT
| - ['
Kamel ﬁ‘ ‘ ‘ l i "‘ ‘ ‘ ‘ \ ‘ ‘ “ ‘]
- - . s
| : ; ;
2. 5. T 12.
COpy SImiving Dk Reqecsl Dk Cala Format Detgoing
Packet (DML : T TET Packet and DA
e . L .
Hardwars P i .
: ' = - -
Network Interface Disk Interface
S

User-Level Virtual Machine

* How does VM Player work?
— Runs as a user-level application
— How does it catch privileged instructions, interrupts,
device I/O?
* Installs kernel driver, transparent to host kernel
— Requires administrator privileges!
— Modifies interrupt table to redirect to kernel VM code
— If interrupt is for VM, upcall

— If interrupt is for another process, reinstalls interrupt
table and resumes kernel

CSE 451 Module 2 48

Guest Usar Mode
Host Usar Mode

Host Usar Mode
Guest Kernal Mode

Guest PC

Euls_t EF " -

st Flags

Host KermalMode

Hast PC

Hast 5P —-1--

Host Flags

Guest
Process
e,
e Prgram
=,]
Guest Kernel | 1oerw
Ll Guest | e
Exraphion Geasi He sysiem Inferrepd
Stk ard ofher el Tatle . ayscall
SEMdbCES Fandkr
Haost Kernal Tt
Hast Hisi 1 Himacdi]
Exra phicn Yireal I b e
shack Oisk Tatle . ayscall
| Hardkr
Hardmare Phssical
Dk

CSE 451 Module 2

49

