
Section 8: Lab 4 Details
CSE 451 19sp

How to add the swap region?

Seems simple, but then you look at mkfs.c…

(Remember mkfs.c is run by the host, aka your computer’s OS, before xk is booted. It sets up the
disk for xk. It is not linked into the XK kernel)

Boot
Block

Super
Block Bitmap Inodes Extent Unused

Add Swap
Region Here!

mkfs.c

mkfs.c runs on the host. It
creates a disk image and
saves it to the given file
name.

If you ran “mkfs fs.img”, the
program would create a file
named “fs.img” containing a
disk image with the layout
shown on the previous slide
and the given files stored in
the filesystem.

if(argc < 2){
 fprintf(stderr, "Usage: mkfs fs.img files...\n");
 exit(1);
}

assert((BSIZE % sizeof(struct dinode)) == 0);
assert((BSIZE % sizeof(struct dirent)) == 0);

fsfd = open(argv[1], O_RDWR|O_CREAT|O_TRUNC, 0666);
if(fsfd < 0){
 perror(argv[1]);
 exit(1);
}

87
88
89
90
91
92
93
94
95
96
97
98
99

argv[1]

mkfs.c

The super block holds
metadata about the file
system, such as its size
(sb.size), the number of
blocks (sb.nblocks), and the
starts of different regions
(sb.bmapstart,
sb.inodestart).

freeblock is used to keep
track of the next free block in
mkfs.c

nmeta = 2 + nbitmap;
nblocks = FSSIZE - nmeta;

sb.size = xint(FSSIZE);
sb.nblocks = xint(nblocks);
sb.bmapstart = xint(2);
sb.inodestart = xint(2+nbitmap);
...
freeblock = nmeta; // the first free block that
 we can allocate

102
103
104
105
106
107
108

112

Boot
Block

Super
Block Bitmap Inodes Extent Unused

1

sb.inodestart
sb.bmapstart freeblock

Super
block

nmeta nblocks

bread,
 bwrite,
 brelse

bread

●  Reads data from disk
●  Takes two arguments:

○  dev - the device
■  Use ROOTDEV,

found in inc/param.h
○  block_no - The block

number to write to

struct buf *buf = bread(dev, block_no);
memmove(mem, buf->data, BSIZE);
brelse(buf);

Always call brelse to help XK keep track of
references to buffered disk blocks!

bwrite

●  Writes data to disk
●  First need to read data into

the buffer, then you can
modify the buffer

●  Changes to the buffer won’t
be flushed to disk until you
call bwrite

●  Don’t forget to call brelse
after!

struct buf *buf = bread(dev, block_no);
memmove(buf->data, P2V(ph_addr), BSIZE);
bwrite(buf);
brelse(buf);

Let’s think!

What will happen when
forking a process with some
of its memory stored in the
swap region?

You found a page to evict
and know its virtual address,
on what conditions should
you update a vspace’s entry?

Concurrency Notes

●  Cannot hold a spin lock while reading/writing to/from disk
●  Cannot acquiresleep() a sleep lock while holding a spin lock

○  Since it may call sleep(), which calls sched()
○  You can acquire() a spin lock while holding a sleep lock

●  When swapping a page in be careful.
○  It may call vspaceinvalidate(), which may in turn call kalloc().
○  vspaceinvalidate() may require up to 3 additional pages per process.
○  You might get a acquire() panic if you’re not careful!

●  Lots of potential concurrency bugs so be careful!

