
Section 7: Intro to Lab 4
CSE 451 19sp

Memory vs Disk

Diagram from CSE 351 18WI slides

●  Memory is in close proximity to the
CPU
○  Fast!
○  Volatile (loss of power == loss of all data in

memory)
○  More expensive

●  Disk is farther away from the CPU
○  Much slower than main memory
○  Non-volatile (loss of power != loss of data),

persistent
○  Less expensive

Virtual Memory

●  Illusion that each
process has all of
memory to itself

●  Would be nice if this

illusion held even
when processes
together use more
space than available
in memory

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Page 8

Page 9

Page 10

Page 11

Page 12

Page 13
...

Page 1024

Memory

= Page in Use

Process 1

Using 512 pages

Process 2

Using 256 pages

Process 3

Using 256 pages

Pages
Used

512

768

1024

Process 4

Using 256 pages 1280!

After lab 4, this
will be possible!

Creating the illusion of more memory

●  Since we need to make it seem
like there is more than 4MB of
memory, we will need somewhere
else to store data

●  Can use the disk to store extra
data, and page it in to memory on
demand (called “paging”)

Memory

Disk

Paging Example - Assumes OS has only 4 pages memory for simplicity

Memory
Page 1

Page 2

Page 3

Page 4

1 2
3 4
5 6
7 8

Swap
Pages

Disk

= Available = In Use

Process 1

Process 2

This mapping could be obtained as a
result of the following requests:

Proc 1: Requests a page of memory

Proc 2: Requests a page of memory

Proc 1: Requests a page of memory

Proc 2: Requests a page of memory

Note: This example is highly simplified

Paging Example - Swap page to disk

Memory
Page 1

Page 2

Page 3

Page 4

1 2
3 4
5 6
7 8

Swap
Pages

Disk

= Available = In Use

Process 1

Process 2

Process 1

requests an

additional page

Memory

Page 2

Page 3

Page 4

2
3 4
5 6
7 8

Swap
Pages

Disk

Process 1

Process 2

1

Page 1

1. Move the least

recently used

page to disk!

2. Allocate the

new page!

Paging Example - Page fault (Page not present), Part 1

= Available = In Use

Process 1 tries to

read from its 1st

page

Page Fault!

Memory

Page 2

Page 3

Page 4

2
3 4
5 6
7 8

Swap
Pages

Disk

Process 1

Process 2

1
2

1
2

3

1

Page 1

Need to make room

for the page stored

on disk.

1. Move the least

recently used page to

disk to make room!

Memory

Page 3

Page 4

3 4
5 6
7 8

Swap
Pages

Disk

Process 1

Process 2

1
2

1
2

3

1

Page 1

2

Page 2

Continued on next slide...

Paging Example - Page fault (Page not present), Part 2

= Available = In Use

Process 1 tries to

read from its 1st

page

Page Fault!

Now that we have an

empty spot in

memory:

2. Move the

requested page into

memory.

Memory

Page 3

Page 4

3 4
5 6
7 8

Swap
Pages

Disk

Process 1

Process 2

1
2

1
2

3

1

Page 1

2

Page 2

Memory

Page 3

Page 4

3 4
5 6
7 8

Swap
Pages

Disk

Process 1

Process 2

1
2

1
2

3

1

Page 1

2

Page 2

XK’s Memory

XK’s hardware is emulated by QEMU. In kernel/Makefrag we set up the
options we will pass to QEMU.

Before (Labs 1 - 3):

16MB (4096 pages)

After (Lab 4):

4MB (1024 pages)

QEMUOPTS += -m 16M QEMUOPTS += -m 4M

XK’s Disk

●  Set up in mkfs.c (this file is used by QEMU, run by the host OS before XK
boots and sets up the disk)

●  Need to add a swap region to use for pages swapped out to disk

Boot
Block

Super
Block Bitmap Inodes Extent Unused

Add Swap
Region Here!

●  512 bytes in a disk block
●  4096 bytes in a page
●  Therefore, need 8 disk

blocks per swap page

Representing the Swap

●  How do you add the swap region to disk?
○  Hint: lab4.md diagram and mkfs.c

●  How should we keep track of a memory page that is in swap region?
○  Hint: See how kalloc.c tracks physical pages for a design example

●  How do you track in a vspace whether a page is in physical memory or
swap memory?
○  Hint: look at vpage_info and how that was used in Lab 3 COW fork

●  What should happen when a swapped memory page is shared via copy-
on-write fork?

Swap In

●  When should we load pages from the swap region?
○  Hint: similar to lab 3’s “when should we make a physical copy of a COW page?”

●  When a page is swapped in, what needs to be updated?
○  Hint: who/what keeps track of whether a virtual page is in the swap?

Swap Out

●  When should we flush pages to the swap?
○  Hint: Look at kalloc.c and at the algorithm in lab4.md

●  Is there a set of memory pages you don't want to flush to swap?
○  Hint: What happens if the trap code page is in the swap?

●  When a page is swapped out, what needs to be updated?
○  Hint: who/what keeps track of whether a virtual page is present in physical memory?

