

CSE 451: Section 5 Handout
5/2/2019

Threads and Page Faults

Threads:

What is the difference between a thread and a process?
xk doesn’t have a thread abstraction - if you were to implement threads in xk, what fields would
they have? With threads, how would the fields of the ​proc struct ​ change?

What are the differences between kernel and user threads?

Why use user threads on a single cpu machine?

List some pros and cons of a many-to-one mapping of user threads to kernel threads compared
to a one-to-one mapping.

CSE 451: Section 5 Handout
5/2/2019

Threads and Page Faults

Page Faults:

A trap 14 defines a page fault, this means that the memory address was a not a valid page for
the client to manipulate.

Can the kernel cause a page fault? If so, how?

For a user process, how will you know if the page fault was caused by attempting to access the
stack region of its virtual address space?
Hint: trap.c has a variable ​addr ​which is the address the user process tried to access.

The trapframe error code can be read with ​myproc()->tf->err.
What will the error code be if the page fault was from touching the stack region of memory?

Can the kernel cause a page fault that was meant for stack growth?

What do the fields of a page (​struct vp ​i) need to be after a copy-on-write fork?
Can the kernel cause a copy-on-write page fault?
What will the error code be if the page fault was from touching a copy-on-write page?
When is copy-on-write less efficient than a deep copy fork?

