Deadlock Summary

Deadlocks are bad
Static and dynamic strategies to deal with deadlocks

In practice, you’ll encounter lock ordering, periodic
deadlock detection/correction, and a lot of stress
testing and debugging

Windows Internals (and Linux) is a deadlock minefield

— Many locks of various types
— Reentrant code, aka recursive calls

Locks in Windows NT

* Code centric versus data centric locking

e Various ways to synchronize in NT

v’ Spinlocks

v' Semaphores

v' Mutex/mutant

v’ Events

v Wait for single or multiple events
v’ EResource

Windows NT EResource

* Motivation

* Some original goals
v" Exclusive and shared access
v’ Recursive acquisition

v No Starvation

v’ Convert exclusive to shared

* Basic design
v Three possible states

v’ List of threads who current have access
v’ List of Waiting threads

Additional Features (?)

Allow for starvation

Allow for one thread to release a lock acquired
by another thread

Try to acquire
Handle priority inversion
Debugging aids

Quick look back at scheduling

 Thread based versus process based

* On MP what about
— Processor affinity

— Cache issues for multiple threads from one
process running on different processors

Address Translation

Main Points

Address Translation Concept (What it is)

— How do we convert a virtual address to a physical address?
Flexible Address Translation (How to do it)

— Base and bound

— Segmentation

— Paging

— Multilevel translation

Efficient Address Translation (Do it fast)

— Translation Lookaside Buffers

— Virtually and physically addressed caches

Relative sizes of virtual address, main memory, etc.

Address Translation Concept

Data

irus

Adcress

*| Trarsdatian | Ireals

Hatm

.
Eozeplian

e
.-

Vaud

Fhipsical

Memary
Physica

Address '

[ats

Address Translation Goals

Memory protection

Memory sharing

— Shared libraries, interprocess communication
Sparse addresses

— Multiple regions of dynamic allocation (heaps/stacks)

Efficiency

— Memory placement

— Runtime lookup

— Compact translation tables

Portability

Bonus Feature

 What can you do if you can (selectively) gain
control whenever a program reads or writes a
particular virtual memory location?

 Examples:

* Copy on write

e Zero on reference
* Fill on demand

* Demand paging

* Memory mapped files

Virtually Addressed Base and Bounds

Processor's View Implementation Physical
Memaory
Virlen Base -
Vil T Vrieal f Pryscal o
Aedrioss Agdremss * Addrass
)-

B+
Raund

.® . Faot

Exception

Question

* With virtually addressed base and bounds,
what is saved/restored on a process context
switch?

Virtually Addressed Base and Bounds

* Pros?
— Simple
— Fast (2 registers, adder, comparator)
— Safe

— Can relocate in physical memory without changing
process

e Cons?

— Can’t keep program from accidentally overwriting its
own code

— Can’t share code/data with other processes
— Can’t grow stack/heap as needed

Segmentation

Segment is a contiguous region of virtual memory

Each process has a segment table (in hardware)

— Entry in table = segment

Segment can be located anywhere in physical
memory

— Each segment has: start, length, access permission

Processes can share segments

— Same start, length, same/different access permissions

Processors View

Processor] "

Segmentation

PFrocessor

Implementation
Virtual Segment Tabkle
; Address Base Bourd Access
“ul Segment] Offset Read
. S— . . u.’w
R/W
i | mw
i o) —— | Mwstcl Mddres
‘é ______ " Raise
Excaption

Physical
Memory

 Bada 3

EBade s
EBound 3

Bpas D

Epes
Sound 0

Bpae]

| FET 28
Bound 1

Bpte 2

| ST RS
Sounag 2

Segment start

length

2 bit segment # code 0x4000 0x700
12 bit offset data 0 0x500

heap - -
main: 240 store #1108, r2 x: 108 abc\0
244 store pc+8, r31
248 jump 360 main: 4240 store #1108, r2
24c 4244 store pc+8§, r31

4248 jump 360

strlen: 360 loadbyte (r2), r3 424c
420 jump (r31) strlen: 4360 loadbyte (r2),r3
x: 1108 abc\O0 4420 jump (r31)

Question

* With segmentation, what is saved/restored on
a process context switch?

UNIX fork and Copy on Write

e UNIX fork

— Makes a complete copy of a process

* Segments allow a more efficient implementation

v’ Copy segment table into child
v Mark parent and child segments read-only
v’ Start child process; return to parent

v" If child or parent writes to a segment (ex: stack, heap)
* trap into kernel
* make a copy of the segment and resume

Processor's View

Process T Wew

Proc essar

......

Processar

Implementation

Segmenl Table

Base Bourd Access

- —— — — ——

| Seg. Dftset Bt Bourd Access
“olo | son Code| g
Virhal Seta W
idrenss Heap AW
Stack I w

Zero-on-Reference

* How much physical memory is needed for the
stack or heap?
— Only what is currently in use

* When program uses memory beyond end of

stack
v’ Segmentation fault into OS kernel
v’ Kernel allocates some memory
" How much?

v’ Zeros the memory
= avoid accidentally leaking information!

v Modify segment table
v/ Resume process

Segmentation

* Pros?
— Can share code/data segments between processes
— Can protect code segment from being overwritten
— Can transparently grow stack/heap as needed
— Can detect if need to copy-on-write
* Cons?
— Complex memory management
* Need to find chunk of a particular size

— May need to rearrange memory from time to time to
make room for new segment or growing segment

* External fragmentation: wasted space between chunks

Paged Translation

* Manage memory in fixed size units, or pages
* Finding a free page is easy

— Bitmap allocation: 0011111100000001100

— Each bit represents one physical page frame

* Each process has its own page table
— Stored in physical memory

— Hardware registers
e pointer to page table start
* page table length

Paged Translation (Abstract)

Processors View Phwsical
Meamory
Frame 0
b l'_l_'-:'E:‘
reTe 2 Dasal
YFage DE Coda ' l:lvq.-l
YFage | oe . | Coadel
Data ' Fqu'{l
[| R ——
\Heapd
;'Pp:]g- ~[Stack i , :'-.h:‘l
Stk
Frama M

Paged Translation (Implementation)

.'..A’_

" Physical
H Adoress

Physical
Memaory
Prysacal :_""'-‘ i’
Adgrass Tame
of Frame DHsen .
Yirtual : Fage Table
Adgress Frame ALcess
| Pages | Dnse
Yirtupl bane cune e cue cune cmdibene cwe e surs sufh cue sune sme suse ofe swe o
Addrass .-

Frame M

Process View

TG Mmm ogonOw

r X - —

Physical Memory

Page Table

rx - —

OO wWX>X» T T m

Paging Questions

* With paging, what is saved/restored on a
process context switch?

— Pointer to page table, size of page table
— Page table itself is in main memory

 What if page size is very small?
 What if page size is very large?

— Internal fragmentation: if we don’t need all of the
space inside a fixed size chunk

Paging and Copy on Write

* How can we share memory between processes?
— Set entries in both page tables to point to same page frames

— Need core map of page frames to track which processes are
pointing to which page frames (e.g., reference count)

* UNIX fork with copy on write
— Copy page table of parent into child process
— Mark all pages (in new and old page tables) as read-only
— Trap into kernel on write (in child or parent)
— Copy page (sometimes easier said than done...)
— Mark both as writeable
— Resume execution

Fill On Demand

e Can | start running a program before its code is in
physical memory?
— Set all page table entries to invalid
— When a page is referenced for first time, kernel trap
— Kernel brings page in from disk
— Resume execution

— Remaining pages can be transferred in the
background while program is running

Sparse Address Spaces

* Might want many separate dynamic
segments

— Per-processor heaps

— Per-thread stacks

— Memory-mapped files

— Dynamically linked libraries

 What if virtual address space is large?
— 32-bits, 4KB pages => 500K page table entries
— 64-bits => 4 quadrillion page table entries

Multi-level Translation

* Tree of translation tables
— Paged segmentation
— Multi-level page tables
— Multi-level paged segmentation

* Fixed-size page as lowest level unit of allocation
— Efficient memory allocation (compared to segments)
— Efficient for sparse addresses (compared to paging)
— Efficient disk transfers (fixed size units)

— Variable granularity for protection/sharing

Paged Segmentation

Process memory is segmented

Segment table entry:

— Pointer to page table

— Page table length (# of pages in segment)
— Access permissions

Page table entry:
— Page frame
— Access permissions

Share/protection at either page or segment-level

Paged Segmentation (Implementation)

Implementation Physical
Memaory
Procasso
Vel
hadress

Segment | Page TS

(=) -+ Exceptien

Sequmfl Tatole
Pape Table Size ACCess

conld - “'m :
H'w - .,_\
AW
Pape Table AW
. Frame @ Access
Fead Phepsical
{ . Read Muress |

ety Frame Offssl

Question

* With paged segmentation, what must be
saved/restored across a process context
switch?

Multilevel Paging

Implementation
Procasso
Virlual
Addrass
o leden nowe 2 Intwe 5 Otsel

Lawed 1

Poyacal :
Adgrass |

Frame

Ozt

Level 2

Lowel 3

Physical
Memaory

x86 Multilevel Paged Segmentation

* Global Descriptor Table (segment table)
— Pointer to page table for each segment
— Segment length
— Segment access permissions

— Context switch: change global descriptor table register
(GDTR, pointer to global descriptor table)

 Multilevel page table
— 4KB pages; each level of page table fits in one page
— 32-bit: two level page table (per segment)
— 64-bit: four level page table (per segment)
— Omit sub-tree if no valid addresses

Multilevel Translation

* Pros:

— Allocate/fill only page table entries that are in use
— Simple memory allocation
— Share at segment or page level

e Cons:

— Space overhead: one pointer per virtual page
— Two (or more) lookups per memory reference

Portability

 Many operating systems keep their own
memory translation data structures

— List of memory objects (segments)

— Virtual page -> physical page frame

— Physical page frame -> set of virtual pages
* One approach: Inverted page table

— Hash from virtual page -> physical page

— Space proportional to # of physical pages

Efficient Address Translation

* Translation lookaside buffer (TLB)

— Cache of recent virtual page -> physical page
translations

— If cache hit, use translation

— If cache miss, walk multi-level page table

* Cost of translation =
Cost of TLB lookup +
Prob(TLB miss) * cost of page table lookup

TLB and Page Table Translation

Vil

Processar

Data

TLE

Ml

Frame

O1esl

Vsl
Misy

@

Pape bevzyhed \ Raige
fn.:-vp:u-
Table
Vabkd
fl]vlr-q
Fhipsical
’ Memary
Physical .
Aldress

[ata

TLB Lookup

Virtual
Aodress

Pages st

Translation Loakaside Bulfer |[TLE)

Virtual Fage

Fae Frame Acass Prysical

]

P .
S

Offsen

Malching Entry >

Physical
Memory

MIPS Software Loaded TLB

* Software defined translation tables
— If translation is in TLB, ok
— If translation is not in TLB, trap to kernel
— Kernel computes translation and loads TLB
— Kernel can use whatever data structures it wants

* Pros/cons?

Question

e What is the cost of a TLB miss on a modern
processor?

— Cost of multi-level page table walk
— MIPS: plus cost of trap handler entry/exit

Hardware Design Principle

The bigger the memory, the slower the memory

Intel i7

' IntegratediMembry Controller-13iCh DDR3

_ Core0. Corel Core 2 . Core3

Shared L3 Cache

Memory Hierarchy

Cache Hit Cost Size
1st level cache/first level TLB 1ns 64 KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns 2MB
Memory (DRAM) 100ns 10GB
Data center memory (DRAM) 100us 100TB
Local non-volatile memory 100us 100GB
Local disk 10ms 1TB
Data center disk i0ms 100PB
Remote data center disk 200 ms 1XB

i7 has 8MB as shared 3™ level cache; 2" level cache is per-core

Question

e What is the cost of a first level TLB miss?
— Second level TLB lookup

e What is the cost of a second level TLB miss?
— x86: 2-4 level page table walk

* How expensive is a 4-level page table walk on
a modern processor?

Virtually Addressed vs. Physically
Addressed Caches

* Too slow to first access TLB to find physical
address, then look up address in the cache

* |nstead, first level cache is virtually addressed

* In parallel, access TLB to generate physical
address in case of a cache miss

Processar |-

Data

Virtually Addressed Caches

Yrihsl
Acdrass

Yirtupl

Cache

H.II

[:-.;l b}

Vel
A ress

Cgel

TLH

i

Frame

irtup
Adgreass

”.'!. . - ———

+ Page

Table

Vald

Fv;mv
Physical
Address

Irrealg --oeeoee

Phiysical
Nemory

v

Ceala

, T
Exceplion

Processar |-

Data

Physically Addressed Cache

Vil
A rass

o

Yirtual

Cache

Hit

C'.;I -

Vrlual
Aadress

Ctgel

TLH

HE

L
Frame

Yirtupl
Adgreass

”|'!_ e

+ Page
Tabke

Vald

Fr;mo
Pryscal
Address

000 11 R

Physical
Cache

HE

Data

. P
Exceplion
Fhipsical
Prysical y
Address

Data

When Do TLBs Work/Not Work?

Video Frame Butfer

* Video Frame P
Buffer: 32 bits ;
X 1K x 1K = ’

4MB

Superpages

 On many systems, TLB entry can be
— A page
— A superpage: a set of contiguous pages
e x86: superpage is set of pages in one page table

— X86 TLB entries
 4KB
* 2MB
* 1GB

Superpages

Virtual
Addrass
pm' Ot - eomeomeimena. T ——— 2
sP Oftsel
Translation Loskasiee Buffer (TLE)
Superpape Superframe :
I5F) or |SF) ar : :
* '@ yous Addrass :
Matchisg Entry .@ _— e T (R TP Oftsen
Malchng
Swperpige - -@~~? :
Page Table - =
’@ “’L.mm y n"m

Physical
Memaory

When Do TLBs Work/Not Work, part 2

 What happens when the OS changes the
permissions on a page?

— For demand paging, copy on write, zero on
reference, ...

* TLB may contain old translation
— OS must ask hardware to purge TLB entry

* On a multicore: TLB shootdown
— OS must ask each CPU to purge TLB entry

TLB Shootdown

Procasy
1] VirtualPaps PageF rame ALoass
- 0 Qu1053 Qa01D33 R
Processor 1 TLB
- 1 Gad0FF a2 AL
- 0 0s1053 Qa1 D33 R
Processor 2 TLB
- 0 Ga0 g1 Qa5 Aead
Processor3TLE = [{ fanre — e
- 0 Qa0 Qa1 D35 Read

When Do TLBs Work/Not Work, part 3

 What happens on a context switch?
— Reuse TLB?
— Discard TLB?

e Solution: Tagged TLB
— Each TLB entry has process ID
— TLB hit only if process ID matches current process

Implementation

Procassor
Virtual
: Address
beeees| Paged | Ottaet |
: Transtatisn Looksside Buller TLE)
Fm“ lu >
f Pracass 1D Page Frame Access Physical |
Malching Enlry »@ Y Frame | Oftset

Physical
Memory

Page
Frame

Question

 With a virtual cache, what do we need to do
on a context switch?

Aliasing

* Alias: two (or more) virtual cache entries that
refer to the same physical memory

— A consequence of a tagged virtually addressed cache!
— A write to one copy needs to update all copies

* Typical solution

— Keep both virtual and physical address for each entry
in virtually addressed cache

— Lookup virtually addressed cache and TLB in parallel

— Check if physical address from TLB matches multiple
entries, and update/invalidate other copies

Multicore and Hyperthreading

Modern CPU has several functional units

— Instruction decode

— Arithmetic/branch

— Floating point

— Instruction/data cache

— TLB

Multicore: replicate functional units (i7: 4)

— Share second/third level cache, second level TLB

Hyperthreading: logical processors that share
functional units (i7: 2)

— Better functional unit utilization during memory stalls
No difference from the OS/programmer perspective
— Except for performance, affinity, ...

Address Translation Uses

Process isolation

— Keep a process from touching anyone else’s memory, or
the kernel’s

Efficient interprocess communication

— Shared regions of memory between processes

Shared code segments

— E.g., common libraries used by many different programs
Program initialization

— Start running a program before it is entirely in memory
Dynamic memory allocation

— Allocate and initialize stack/heap pages on demand

Address Translation (more)

Cache management

— Page coloring

Program debugging

— Data breakpoints when address is accessed
Zero-copy 1/0O

— Directly from I/O device into/out of user memory
Memory mapped files

— Access file data using load/store instructions
Demand-paged virtual memory

— lllusion of near-infinite memory, backed by disk or
memory on other machines

Address Translation (even more)

Checkpointing/restart

— Transparently save a copy of a process, without
stopping the program while the save happens

Persistent data structures

— Implement data structures that can survive system
reboots

Process migration

— Transparently move processes between machines
Information flow control

— Track what data is being shared externally
Distributed shared memory

— lllusion of memory that is shared between machines

