
Section 4: Lab 2 (contd.)
Section 4: 10/17/19

Exec

● Replaces the current process, does not create a new process
○ Commonly used with fork. Fork first creates a new process and then exec

loads a program and has the newly created process run it.

● Many uses for exec, for example the shell uses fork and exec to
run commands.

Note: Example code is from Hal Perkin’s 333 course. Thanks to Hal and his team for the
shell code.

x86-64 Calling Conventions

● %rdi
○ Holds the first argument

● %rsi
○ Holds the second argument

● %rsp
○ Points to the top of the stack/lowest address (stack grows

down)
● Local variables are stored on the stack (If arguments are

arrays, store them on the stack and store a pointer in the
register)

int
main(int argc,
 char *argv)

● First argument will always
be argc (number of
arguments)

● Second argument will
always be argv, an array of
strings (first string is
always the name of the
program)

Exec Stack Layout

0
arg #0 string
arg #1 string
arg #2 string

...

arg #(argc - 1)
string

argv[argc - 1]
...

argv[2]

argv[1]
argv[0]

Return PC

argv%RSI

argc%RDI

*%RSP

Registers

Stack
grows
down

Low
addresses

High
addresses ● argv is an array of

pointers, therefore %RSI
points to an array on the
stack

● Since each element of
the argv array is a char
*, each element points
to a string stored
elsewhere on the stack.

● You can think of all
variables stored above
the return PC on the
stack as local variables
of the caller.

Let’s Practice!
(Get out some paper and
pens!)

Practice Exercise 1 - “cat cat.txt”

?%RSI

?%RDI

?%RSP

Registers

Stack
grows
down

Low
addresses

High
addresses TODO:

Draw out the stack layout
and determine the register
values for exec called with
“cat cat.txt”.

Practice Exercise 1 - “cat cat.txt” Solution

argv%RSI

2%RDI

*%RSP

Registers

Low
addresses

High
addresses

● %RDI, the first argument,
holds argc, which is 2.

● %RSI, the second
argument, holds argv,
which is a pointer to the
beginning of the argv
array.

● %RSP, the stack pointer,
has been properly
adjusted to point to the
bottom of the stack. The
value of the return PC
does not matter.

Return PC
argv[0]
argv[1]

\0
“cat”

“cat.txt”

Practice Exercise 2 - “kill -9 500”

?%RSI

?%RDI

?%RSP

Registers

Stack
grows
down

Low
addresses

High
addresses

TODO:

Draw out the stack layout
and determine the register
values for exec called with
“kill -9 500”.

Practice Exercise 2 - “kill -9 500” Solution

argv%RSI

3%RDI

*%RSP

Registers

Low
addresses

High
addresses

● %RDI, the first argument,
holds argc, which is 3.

● %RSI, the second
argument, holds argv,
which is a pointer to the
beginning of the argv
array.

● %RSP, the stack pointer,
has been properly
adjusted to point to the
bottom of the stack. The
value of the return PC
does not matter.

argv[1]
argv[2]

\0
“kill”
“-9”

“500”

argv[0]
Return PC

Pipes

● Pipes are a mechanism used for inter-process communication
(IPC)

● With the sys_pipe, a process sets up a writing and reading end to
a “holding area” where data can be passed from process to
process

● What should happen if the write end or the read end is closed (by
potentially multiple writers/readers)? When can you free the
buffer of the pipe?

Pipe allocation

● Pipes should be allocated at runtime, when the pipe is requested
by a process

○ What mechanism does xk provide to allocate memory dynamically?

● Each pipe should behave like a file so that the file-oriented
system calls can work as normal with the pipe

○ How can you determine whether a struct file is an inode or a pipe?

	Slide 1
	Exec
	x86-64 Calling Conventions
	int main(int argc, char *argv)
	Exec Stack Layout
	Let’s Practice! (Get out some paper and pens!)
	Practice Exercise 1 - “cat cat.txt”
	Practice Exercise 1 - “cat cat.txt” Solution
	Practice Exercise 2 - “kill -9 500”
	Practice Exercise 2 - “kill -9 500” Solution
	Pipes
	Pipe allocation

