
CSE 451 Section 2
XK Lab 1 Design
au19

Where to start?

Start by reading:

●  lab/overview.md - A description of the xk codebase. A MUST-READ!
●  lab/lab1.md - Assignment write-up
●  lab/memory.md - An overview of memory management in xk
●  lab1design.md - A design doc for the lab 1 code

○  You will be in charge of writing design docs for the future labs. Check out lab/
designdoc.md for details.

File Information

Need a way to store the following information about a file:

●  In memory reference count
●  A reference to the inode of the file
●  Current offset
●  Access permissions (readable or writable) [for when

we add pipes and file writeability later]

File Info Struct

Kernel View

There will be a global array of all the open files on the system (bounded by
NFILE) placed in static memory.

File Info
Struct
Index 0

File Info
Struct
Index 1

File Info
Struct
Index 2

File Info
Struct
Index

NFILE - 2

File Info
Struct
Index

NFILE - 1

= In use = Available

Process View

File
Info

Struct
Index 0

File
Info

Struct
Index 1

File
Info

Struct
Index 2

G
lo

ba
l

A
rr

ay
 File

Info
Struct
Index 3

File
Info

Struct
Index 4

File
Info

Struct
Index 5

File
Info

Struct
Index 6

Process 1’s File Descriptor
Array

0 1 2 3 NOFILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor
Array

0 1 2 3 NOFILE
st

ru
ct

 p
ro

c

Functions

filewrite and fileread

●  Writing or reading of a "file", based on whether the file is an inode or a
pipe.
○  Note that file is in quotes. A file descriptor can represent many different things. You could

be reading from a file, or you could be reading from standard in or a pipe!

●  Don’t need to worry about the pipe part for this lab, just the inode files.
●  Check out the functions readi and writei defined in kernel/fs.c

fileopen

Finds an open file in the global file table to give to the process

File
Info

Struct
Index 0

File
Info

Struct
Index 1

G
lo

ba
l

A
rr

ay

0 1 2 3

st
ru

ct
 p

ro
c

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

fileclose

Release the file from this process, will have to clean up if this is the last reference

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

A
rr

ay
 File

Info
Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

filedup

Duplicates the file descriptor in the process’ file descriptor table

File
Info

Struct
Index 0

File
Info

Struct
Index 1

G
lo

ba
l

A
rr

ay

0 1 2 3

st
ru

ct
 p

ro
c

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

filestat

●  Return statistics to the user about a file
●  Check out the function stati in kernel/fs.c

System Calls

●  sys_open, sys_read, sys_write, sys_close, sys_dup, sys_fstat
●  Main goals of sys functions

○  Argument parsing and validation (never trust the user!)
○  Call associated file functions

Argument Parsing & Validation

All functions have int n, which will get the n'th argument. Returns 0 on success,
-1 on failure
●  int argint(int n, int *ip): Gets an int argument
●  int argint64_t(int n, int64_t *ip): Gets a int64_t argument
●  int argptr(int n, char **pp, int size): Gets an array of size. Needs size to

check array is within the bounds of the user's address space
●  int argstr(int n, char **pp): Tries to read a null terminated string.

You should implement and then use:
●  int argfd(int n, int *fd): Will get the file descriptor, making sure it's a valid

file descriptor (in the open file table for the process).

Console Input/Output

●  The console device is just a special file called “console”!
●  Code to handle device files is already handled for you

○  Its information is already provided for you when you open the device file.
○  Where? Look at kernel/fs.c, inc/file.h and how the T_DEV file type is used.

●  I thought stdin/stdout/stderr were always available?
○  Recall that fork() copies the file descriptor table and there’s always a root process. The

root process is actually what opens the console device file, and every process inherits
from root, which is why stdin/stdout/stderr are available on non-root processes.

Where is X?

From the top level of the repo, run:

grep -R “X” .
For better results, ctags is a useful tool on attu (man ctags) with support built
into vim and emacs. There are shortcuts in vim/emacs for jumping to where a
function/type/macro/variable is defined when using ctags.

Staging of work

1.  The global file table
2.  File functions
3.  User/Process file table
4.  System calls

