
Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

 i

SSeerriiaall AATTAA

AAddvvaanncceedd HHoosstt CCoonnttrroolllleerr IInntteerrffaaccee

((AAHHCCII)) 11..33..11

Revision 1_3_1.doc

Please send comments to James Boyd
james.a.boyd@intel.com

mailto:james.a.boyd@intel.com
mailto:james.a.boyd@intel.com

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 ii

 Table of Contents

1 INTRODUCTION ... 1

1.1 Overview ... 1
1.2 Scope .. 1
1.3 Outside of Scope ... 1
1.4 Block Diagram ... 1
1.5 Conventions .. 3
1.6 Definitions ... 4

1.6.1 active command slot ... 4
1.6.2 command list .. 4
1.6.3 command slot ... 4
1.6.4 cs .. 4
1.6.5 D2H .. 4
1.6.6 device ... 4
1.6.7 FIS .. 4
1.6.8 H2D .. 4
1.6.9 HBA .. 4
1.6.10 n/a .. 4
1.6.11 port ... 4
1.6.12 PRD .. 4
1.6.13 queue ... 4
1.6.14 register memory ... 5
1.6.15 Task File ... 5
1.6.16 system memory .. 5

1.7 Theory of Operation ... 5
1.8 Interaction with Legacy Software ... 5
1.9 References .. 6

2 HBA CONFIGURATION REGISTERS ... 8

2.1 PCI Header.. 8
2.1.1 Offset 00h: ID - Identifiers .. 8
2.1.2 Offset 04h: CMD - Command ... 8
2.1.3 Offset 06h: STS - Device Status... 9
2.1.4 Offset 08h: RID - Revision ID ... 9
2.1.5 Offset 09h: CC - Class Code .. 9
2.1.6 Offset 0Ch: CLS – Cache Line Size ... 9
2.1.7 Offset 0Dh: MLT – Master Latency Timer .. 10
2.1.8 Offset 0Eh: HTYPE – Header Type .. 10
2.1.9 Offset 0Fh: BIST – Built In Self Test (Optional) .. 10
2.1.10 Offset 10h – 20h: BARS – Other Base Addresses (Optional) .. 10
2.1.11 Offset 24h: ABAR – AHCI Base Address ... 10
2.1.12 Offset 2Ch: SS - Sub System Identifiers .. 10
2.1.13 Offset 30h: EROM – Expansion ROM (Optional) ... 10
2.1.14 Offset 34h: CAP – Capabilities Pointer ... 11
2.1.15 Offset 3Ch: INTR - Interrupt Information .. 11
2.1.16 Offset 3Eh: MGNT – Minimum Grant (Optional) ... 11
2.1.17 Offset 3Fh: MLAT – Maximum Latency (Optional) ... 11

2.2 PCI Power Management Capabilities ... 11
2.2.1 Offset PMCAP: PID - PCI Power Management Capability ID ... 11
2.2.2 Offset PMCAP + 2h: PC – PCI Power Management Capabilities ... 11
2.2.3 Offset PMCAP + 4h: PMCS – PCI Power Management Control And Status .. 12

2.3 Message Signaled Interrupt Capability (Optional) ... 12
2.3.1 Offset MSICAP: MID – Message Signaled Interrupt Identifiers .. 12
2.3.2 Offset MSICAP + 2h: MC – Message Signaled Interrupt Message Control .. 12
2.3.3 Offset MSICAP + 4h: MA – Message Signaled Interrupt Message Address .. 13
2.3.4 Offset MSICAP + (8h or Ch): MD – Message Signaled Interrupt Message Data 13
2.3.5 Offset MSICAP + 8h: MUA – Message Signaled Interrupt Upper Address (Optional) 13

2.4 Serial ATA Capability (Optional) ... 13

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

 iii

2.4.1 Offset SATACAP: SATACR0 – Serial ATA Capability Register 0 .. 13
2.4.2 Offset SATACAP + 4h: SATACR1 – Serial ATA Capability Register 1 .. 13

2.5 Other Capability Pointers ... 14

3 HBA MEMORY REGISTERS ... 15

3.1 Generic Host Control ... 15
3.1.1 Offset 00h: CAP – HBA Capabilities ... 15
3.1.2 Offset 04h: GHC – Global HBA Control .. 17
3.1.3 Offset 08h: IS – Interrupt Status Register ... 18
3.1.4 Offset 0Ch: PI – Ports Implemented ... 18
3.1.5 Offset 10h: VS – AHCI Version .. 19
3.1.6 Offset 14h: CCC_CTL – Command Completion Coalescing Control.. 19
3.1.7 Offset 18h: CCC_PORTS – Command Completion Coalescing Ports ... 20
3.1.8 Offset 1Ch: EM_LOC – Enclosure Management Location ... 20
3.1.9 Offset 20h: EM_CTL – Enclosure Management Control .. 20
3.1.10 Offset 24h: CAP2 – HBA Capabilities Extended... 21
3.1.11 Offset 28h: BOHC – BIOS/OS Handoff Control and Status .. 22

3.2 Vendor Specific Registers .. 22
3.3 Port Registers (one set per port) .. 22

3.3.1 Offset 00h: PxCLB – Port x Command List Base Address ... 23
3.3.2 Offset 04h: PxCLBU – Port x Command List Base Address Upper 32-bits .. 23
3.3.3 Offset 08h: PxFB – Port x FIS Base Address ... 23
3.3.4 Offset 0Ch: PxFBU – Port x FIS Base Address Upper 32-bits ... 23
3.3.5 Offset 10h: PxIS – Port x Interrupt Status .. 23
3.3.6 Offset 14h: PxIE – Port x Interrupt Enable ... 24
3.3.7 Offset 18h: PxCMD – Port x Command and Status .. 26
3.3.8 Offset 20h: PxTFD – Port x Task File Data .. 28
3.3.9 Offset 24h: PxSIG – Port x Signature ... 29
3.3.10 Offset 28h: PxSSTS – Port x Serial ATA Status (SCR0: SStatus) ... 29
3.3.11 Offset 2Ch: PxSCTL – Port x Serial ATA Control (SCR2: SControl) .. 29
3.3.12 Offset 30h: PxSERR – Port x Serial ATA Error (SCR1: SError) ... 31
3.3.13 Offset 34h: PxSACT – Port x Serial ATA Active (SCR3: SActive) .. 32
3.3.14 Offset 38h: PxCI – Port x Command Issue ... 32
3.3.15 Offset 3Ch: PxSNTF – Port x Serial ATA Notification (SCR4: SNotification) .. 33
3.3.16 Offset 40h: PxFBS: Port x FIS-based Switching Control .. 33
3.3.17 Offset 44h: PxDEVSLP – Port x Device Sleep ... 34
3.3.18 Offset 70h to 7Fh: PxVS – Vendor Specific .. 35

4 SYSTEM MEMORY STRUCTURES .. 36

4.1 HBA Memory Space Usage ... 36
4.2 Port Memory Usage ... 37

4.2.1 Received FIS Structure .. 38
4.2.2 Command List Structure ... 39
4.2.3 Command Table ... 42

5 DATA TRANSFER OPERATION .. 44

5.1 Introduction.. 44
5.2 HBA Controller State Machine (Normative) .. 44

5.2.1 Variables .. 44
5.2.2 HBA Idle States .. 44

5.3 HBA Port State Machine (Normative) ... 46
5.3.1 Variables .. 46
5.3.2 Port Idle States ... 48
5.3.3 FIS-based Switching Specific States .. 52
5.3.4 Power Management States .. 53
5.3.5 Non-Data FIS Receive States .. 56
5.3.6 Command Transfer States ... 57
5.3.7 ATAPI Command Transfer States .. 59
5.3.8 D2H Register FIS Receive States .. 59
5.3.9 PIO Setup Receive States .. 61

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 iv

5.3.10 Data Transmit States .. 62
5.3.11 Data Receive States ... 63
5.3.12 DMA Setup Receive States .. 64
5.3.13 Set Device Bits States .. 65
5.3.14 Unknown FIS Receive States ... 66
5.3.15 BIST States .. 67
5.3.16 Error States .. 67

5.4 HBA Rules (Normative) .. 69
5.4.1 PRD Byte Count Updates ... 69
5.4.2 PRD Interrupt ... 69

5.5 System Software Rules (Normative) .. 70
5.5.1 Basic Steps when Building a Command ... 70
5.5.2 Setting CH(pFreeSlot).P ... 70
5.5.3 Processing Completed Commands .. 70

5.6 Transfer Examples (Informative) .. 71
5.6.1 Macro States .. 71
5.6.2 DMA Data Transfers ... 71
5.6.3 PIO Data Transfers .. 73
5.6.4 Native Queued Command Transfers .. 75
5.6.5 FIS-based Switching Command Transfers ... 79

6 ERROR REPORTING AND RECOVERY ... 82

6.1 Error Types.. 82
6.1.1 System Memory Errors ... 82
6.1.2 Interface Errors... 82
6.1.3 Port Multiplier Errors ... 83
6.1.4 Taskfile Errors .. 83
6.1.5 Command List Overflow ... 84
6.1.6 Command List Underflow ... 84
6.1.7 PIO Data Transfer Errors ... 84
6.1.8 SYNC Escape by device .. 84
6.1.9 Device responds to FIS with R_ERR .. 85
6.1.10 CRC error in received FIS .. 85
6.1.11 D2H FIS received without active command slot ... 85

6.2 Error Recovery .. 85
6.2.1 HBA Aborting a Transfer .. 85
6.2.2 Software Error Recovery .. 86

7 HOT PLUG OPERATION .. 88

7.1 Platforms that Support Cold Presence Detect .. 88
7.1.1 Device Hot Unplugged ... 88
7.1.2 Device Hot Plugged .. 88

7.2 Platforms that Support Mechanical Presence Switches. ... 88
7.3 Native Hot Plug Support .. 88

7.3.1 Hot Plug Removal Detection and Power Management Interaction (Informative) 88
7.4 Interaction of the Command List and Port Change Status .. 89

8 POWER MANAGEMENT OPERATION .. 90

8.1 Introduction.. 90
8.2 Power State Mappings ... 90
8.3 Power State Transitions ... 91

8.3.1 Interface Power Management .. 91
8.3.2 Device D1, D2, and D3 States ... 92
8.3.3 HBA D3 state.. 92

8.4 PME .. 93
8.5 Device Sleep (DEVSLP) Feature ... 93

8.5.1 Aggressive Device Sleep Management .. 93
8.5.2 DEVSLP Idle Timeout .. 94
8.5.3 Software Initiated DEVSLP .. 94

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

 v

8.5.4 Exiting from DevSleep .. 95
8.5.5 Device Sleep and Automatic Partial to Slumber Transition Support ... 95
8.5.6 Device Sleep and Mechanical Interlock Switch Support ... 95

9 PORT MULTIPLIER SUPPORT ... 96

9.1 Command Based Switching ... 96
9.1.1 Non-Queued Operation .. 96
9.1.2 Queued Operation .. 97

9.2 Port Multiplier Enumeration .. 97
9.3 FIS-based Switching .. 97

9.3.1 Configuration .. 97
9.3.2 Command Ordering .. 99
9.3.3 FIS Receive Area ... 99
9.3.4 DMA Context .. 100
9.3.5 Data FIS transfers to the device – locking the interface ... 100
9.3.6 Error Handling .. 100
9.3.7 PxTFD Register Information ... 102
9.3.8 SYNC Escape and setting the ‘R’ bit in Command Headers .. 102
9.3.9 FIS-based switching and Device Enumeration ... 102

10 PLATFORM COMMUNICATION ... 103

10.1 Software Initialization of HBA ... 103
10.1.1 Firmware Specific Initialization ... 103
10.1.2 System Software Specific Initialization ... 103

10.2 Hardware Prerequisites to Enable/Disable GHC.AE ... 104
10.3 Software Manipulation of Port DMA Engines .. 105

10.3.1 Start (PxCMD.ST) .. 105
10.3.2 FIS Receive Enable (PxCMD.FRE) .. 105

10.4 Reset ... 106
10.4.1 Software Reset ... 106
10.4.2 Port Reset .. 106
10.4.3 HBA Reset ... 107

10.5 Interface Speed Support... 107
10.6 BIOS/OS Handoff Mechanism .. 108

10.6.1 Default / reset state .. 108
10.6.2 BIOS declares ownership request .. 108
10.6.3 OS declares ownership request ... 108
10.6.4 BIOS releases ownership ... 108

10.7 Interrupts ... 109
10.7.1 Tiered Operation .. 109
10.7.2 HBA/SW Interaction ... 110
10.7.3 Disabling Device Interrupts (NIEN Bit in Device Control Register) ... 112

10.8 Mechanical Presence Switch Operation .. 112
10.9 Cold Presence Detect Operation .. 112
10.10 Staggered Spin-up Operation ... 112

10.10.1 Interaction of PxSCTL.DET and PxCMD.SUD ... 113
10.10.2 Spin-Up Procedure (Informative) .. 113
10.10.3 Preparing for Low Power System State (Informative) ... 114
10.10.4 When to Enter Listen Mode (Informative) ... 114

10.11 Asynchronous Notification .. 114
10.11.1 Notifications from ATAPI Devices ... 114
10.11.2 Notifications from Devices Connected to a Port Multiplier .. 115
10.11.3 Notifications from Other Device Types ... 115

10.12 Activity LED ... 115
10.13 BIST .. 116
10.14 Index-Data Pair .. 116

10.14.1 Rules/Restrictions .. 116
10.14.2 IDP Index Register Format ... 117
10.14.3 IDP Data Register Format .. 117

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 vi

10.14.4 Access Mechanism .. 117
10.14.5 Index-Data Pair Discovery .. 118

10.15 NVMHCI .. 118
10.15.1 NVMHCI Register Support ... 118
10.15.2 NVMHCI Generic Host Control under AHCI ... 118

10.16 Automatic Partial to Slumber Transitions .. 119
10.16.1 Automatic Partial to Slumber Transitions ... 119

11 COMMAND COMPLETION COALESCING ... 120

11.1 Command Completion Definition .. 120
11.2 Timer Definition .. 120
11.3 Selected Ports .. 120
11.4 Interrupt Definition .. 120
11.5 Enable and Disable Behavior ... 121
11.6 Software Behavior .. 121

11.6.1 Initialization .. 121
11.6.2 Errors and Hot Plug Events .. 121
11.6.3 CCC Interrupt Handling .. 122
11.6.4 Updating Timeout Value or Number of Command Completions ... 122

11.7 Example (Informative) .. 122

12 ENCLOSURE MANAGEMENT .. 124

12.1 Mechanism .. 124
12.2 Message Format .. 125

12.2.1 LED message type ... 126
12.2.2 SAF-TE message type ... 127
12.2.3 SES-2 message type .. 127

13 INFORMATIVE APPENDIX ... 129

13.1 Port Selector Support ... 129
13.2 Legacy ATAPI Device Seek Complete Behavior ... 129

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

 vii

Table of Figures
Figure 1: IA Based System Diagram .. 2
Figure 2: Embedded System Diagram ... 3
Figure 3: Example of HBA Silicon Supporting Both Legacy and AHCI Interfaces .. 6
Figure 4: HBA Memory Space Usage .. 36
Figure 5: Port System Memory Structures ... 37
Figure 6: Received FIS Organization ... 38
Figure 7: Command List Structure ... 39
Figure 8: DW 0 – Description Information .. 40
Figure 9: DW 1 - Command Status .. 40
Figure 10: DW 2 – Command Table Base Address ... 40
Figure 11: DW 3 – Command Table Base Address Upper ... 41
Figure 12: DW 4-7 – Reserved... 41
Figure 13: Command Table ... 42
Figure 14: DW 0 – Data Base Address .. 43
Figure 15: DW 1 – Data Base Address Upper ... 43
Figure 16: DW 2 – Reserved .. 43
Figure 17: DW 3 – Description Information .. 43
Figure 18: HBA Error Handling Behavior ... 67
Figure 19: Power State Hierarchy .. 90
Figure 20: FIS Receive Area for FIS-based Switching ... 100
Figure 21: Interrupt Tiers .. 109
Figure 22: MSI vs. PCI IRQ Actions ... 110
Figure 23: Port/CCC and MSI Message Mapping, Example 1 ... 111
Figure 24: Port and MSI Message Mapping, Example 2 .. 111
Figure 25: Enclosure Management Buffer Location ... 125

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

1

1 Introduction

1.1 Overview

This specification defines the functional behavior and software interface of the Advanced Host Controller
Interface, which is a hardware mechanism that allows software to communicate with Serial ATA devices.
AHCI is a PCI class device that acts as a data movement engine between system memory and Serial
ATA devices.

AHCI host devices (referred to as host bus adapters, or HBA) support from 1 to 32 ports. An HBA must
support ATA and ATAPI devices, and must support both the PIO and DMA protocols. An HBA may
optionally support a command list on each port for overhead reduction, and to support Serial ATA Native
Command Queuing via the FPDMA Queued Command protocol for each device of up to 32 entries. An
HBA may optionally support 64-bit addressing.

AHCI describes a system memory structure which contains a generic area for control and status, and a
table of entries describing a command list (an HBA which does not support a command list shall have a
depth of one for this table). Each command list entry contains information necessary to program an
SATA device, and a pointer to a descriptor table for transferring data between system memory and the
device.

1.2 Scope

AHCI encompasses a PCI device. It contains a PCI BAR (Base Address Register) to implement native
SATA features. AHCI specifies the following features:

 Support for 32 ports  64-bit addressing

 Elimination of Master / Slave Handling  Large LBA support

 Hot Plug  Power Management

 HW Assisted Native Command Queuing  Staggered Spin-up

 Cold device presence detect  Serial ATA superset registers

 Activity LED generation  Port Multiplier

1.3 Outside of Scope

AHCI does not contain information relevant to implementing the Transport, Link or Phy layers of Serial
ATA as this is wholly described in the Serial ATA 1.0a specification.

AHCI does not specify ATA legacy behavior, such as the legacy I/O ranges, or Bus Master IDE.
Allowances have been made in AHCI so that an HBA may implement these features for backward
compatibility with older operating systems (for example, the location of the memory BAR for AHCI is after
the BAR locations for both native IDE and bus master IDE).

1.4 Block Diagram

In Figure 1, several AHCI HBAs are attached in a typical computer system. One HBA is integrated in the
core chipset. Another sits off the first available PCI/PCI-X bus. (PCI is used as a reference name. The
bus can be any PCI-like bus, such as PCI-X, PCI-Express, HyperTransport, etc.) The intent is to be
compliant with the PCI base specification. Compliance with non-PCI specifications is dependant upon
those specifications being compliant/compatible with PCI.

A final HBA sits off a second PCI bus that exists behind a PCI-PCI bridge. This last HBA has one port
attached to a Port Multiplier

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 2

Figure 1: IA Based System Diagram

PCI / PCI-X

CPU

Chipset

AHCI

HBA

AHCI

HBA

AHCI

HBA

PCI / PCI-X

P2P

Bridge

Port

Multiplier

System Memory

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

3

In Figure 2, two HBA are connected to an embedded CPU with its own local memory. This configuration
would most likely be used in a RAID-type environment.

Figure 2: Embedded System Diagram

PCI / PCI-X

Embedded

CPU

P2P

Bridge

Memory

PCI / PCI-X

AHCI

HBA

AHCI

HBA

Network

I/F

Network

1.5 Conventions

Hardware must return ‘0’ for all bits and registers that are marked as reserved, and software must write all
reserved bits and registers with the value of ‘0’.

Inside the register section, the following abbreviations are used:

RO Read Only
RW Read Write

RWC Read/Write ‘1’ to clear
RW1 Read/Write ‘1’ to set

Impl. Spec. Implementation Specific – the HBA has the freedom to choose its
implementation.

HwInit The default state is dependent on device and system configuration.
The value is initialized at reset, either by an expansion ROM, or in the
case of integrated devices, by a platform BIOS.

When a register bit is referred to in the document, the convention used is “Register Symbol.Field Symbol”.
For example, the configuration space PCI command register parity error response bit is referred to by the
name CMD.PEE. If the register field is an array of bits, the field will be referred to as “Register
Symbol.Field Symbol(array offset)”.

When a memory field is referred to in the document, the convention used is “Register Name[Offset
Symbol]”. For example, the pointer to the Command Header of port 0 is referred to by the name
P0CLB[CH0].

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 4

1.6 Definitions

1.6.1 active command slot

A slot, z, is considered active when PxCI[z] is set to ‘1’ by software, and remains active until PxCI[z] and
PxSACT[z] are both cleared to ‘0’ by hardware indicating the command is complete. This condition is
only valid if PxCMD.ST is set to ‘1’ (prior to software setting PxCI[z] is to ‘1’) and remains set to ‘1’ until
after PxCI[z] and PxSACT[z] are both cleared to ‘0’ by hardware.

1.6.2 command list

Defines commands located in system memory that an HBA processes. This is a list that may contain 1 to
32 entries (called command slots), and may contain any type of ATA or ATAPI command. The command
list is advanced when the BSY, DRQ, and ERR bits of a Serial ATA device is cleared.

1.6.3 command slot

A command slot is one of the entries in the command list. The command slot contains the command to
execute. Up to 32 slots (i.e. entries) are supported in a command list.

1.6.4 cs

cs is used to describe fields that have a command specific meaning.

1.6.5 D2H

D2H is an acronym for “device to HBA”. In the Serial ATA specifications, this acronym stands similarly for
“device to host”. D2H is often used to describe the direction of transfer for a FIS.

1.6.6 device

A physical device, such as a hard disk drive (HDD) or an optical disk drive (ODD) that is either directly
attached to an HBA port, or is attached through a Port Multiplier to an HBA port.

1.6.7 FIS

FIS is an acronym for “Frame Information Structure”. A FIS is a packet or frame of information that is
transferred between the host and device. Refer to the Serial ATA 1.0a specification for more information.

1.6.8 H2D

H2D is an acronym for “HBA to device”. In the Serial ATA specifications, this acronym stands similarly for
“host to device”. H2D is often used to describe the direction of transfer for a FIS.

1.6.9 HBA

HBA is an acronym for “host bus adapter”. A host bus adapter refers to the silicon that implements the
AHCI specification to communicate between system memory and Serial ATA devices.

1.6.10 n/a

n/a is used to describe fields that are not applicable or unused for a particular command.

1.6.11 port

A physical port on the HBA, with a set of registers that control the DMA and link operations. A physical
port may have several devices attached to it via a Port Multiplier.

1.6.12 PRD

PRD is an acronym for “physical region descriptor”. PRD entries describe the physical location and
length of data to be transferred. Refer to section 4.2.3.3.

1.6.13 queue

Indicates the ATA command queue inside a Serial ATA device. This is differentiated from the command
list in that a queue shall only exist in a Serial ATA device when all the commands in the HBA’s command
list are Serial ATA native queuing commands.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

5

1.6.14 register memory

Registers allocated in the memory space of the HBA. These registers are physically implemented in the
HBA.

1.6.15 Task File

Interface registers used for delivering commands to the device or posting status from the device. In
Serial ATA, these registers are communicated as part of FIS payload fields. In later revisions of the ATA
specification, these registers may be referred to as the Command and Control Block registers.

1.6.16 system memory

DRAM or “main” memory of a computer system, used to communicate data and command information
between the host processor and the Serial ATA device.

1.7 Theory of Operation

AHCI takes the basics of the scatter/gather list concept of Bus Master IDE, and expand it to reduce
CPU/software overhead and provide support for Serial ATA features such as hot plug, power
management, and accessing of several devices without performing master/slave emulation.

Communication between a device and software moves from the task file via byte-wide accesses to a
command FIS located in system memory that is fetched by the HBA. This reduces command setup time
significantly, allowing for many more devices to be added to a single host controller. Software no longer
communicates directly to a device via the task file.

AHCI is defined to keep the HBA relatively simple so that it can act as a data mover. An HBA
implementing AHCI is not required to parse any of the ATA or ATAPI commands as they are transferred
to the device, although it is not prohibited from doing so.

All data transfers between the device and system memory occur through the HBA acting as a bus master
to system memory. Whether the transaction is of a DMA type or a PIO type, the HBA fetches and stores
data to memory, offloading the CPU. There is no accessible data port.

All transfers are performed using DMA. The use of the PIO command type is strongly discouraged. PIO
has limited support for errors – for example, the ending status field of a PIO transfer is given to the HBA
during the PIO Setup FIS, before the data is transferred. However, some commands may only be
performed via PIO commands (such as IDENTIFY DEVICE). Some HBA implementations may limit PIO
support to one DRQ block of data per command.

The AHCI defines a standard mechanism for implementing a SATA command queue using the DMA
Setup FIS. An HBA which supports queuing has individual slots in the Command List allocated in
system memory for all the commands. Software can place a command into any empty slot, and upon
notifying the HBA via a register access, the HBA shall fetch the command and transfer it. The tag that is
returned in the DMA Setup FIS is used as an index into the command list to get the scatter/gather list
used in the transfer.

This command list can be used by system software and the HBA even when non-queued commands
need to be transferred. System software can still place multiple commands in the list, whether DMA, PIO,
or ATAPI, and the HBA will walk the list transferring them.

This multiple-use of the command list is achieved by the HBA only moving its command list pointer when
the BSY, DRQ, and ERR bits are cleared by the device. System software is responsible to ensure that
queued and non-queued commands are not mixed in the command list for the same device with the
exception of the NCQ Unload command. NCQ Unload is a non-queued command which may be issued
to park the disk head in an emergency. Please refer to section 5.6.4.3 for more information regarding
NCQ Unload.

1.8 Interaction with Legacy Software

AHCI is a self-contained specification that is intended to support all aspects of communicating with SATA
devices, without having to utilize any legacy features such as shadow copies of the task file, snooping of
bits in commands, etc.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 6

HBAs that support legacy software mechanisms must do so in a fashion that is transparent to AHCI.
Legacy registers are not allowed to affect any bits in AHCI registers, nor is AHCI software allowed to
affect any bits in legacy registers. Software written for AHCI is not allowed to utilize any of the legacy
mechanisms to program devices. In essence, an HBA that supports both mechanisms must isolate its
legacy and AHCI engines, as shown in Figure 3.

Figure 3: Example of HBA Silicon Supporting Both Legacy and AHCI Interfaces

System Bus (e.g. PCI / PCI-X)

HBA Silicon

AHCI

Interface

Legacy

Interface

DMA, Link, PHY

logic

How an HBA running legacy software supports more than 4 ports is beyond the scope of this
specification. How software transitions between legacy and AHCI modes of operation is beyond the
scope of this specification.

1.9 References

The AHCI utilizes the following documents as references:
PCI Specification, Revision 3.0

o http://www.pcisig.com

PCI Power Management Specification
o http://www.pcisig.com

ATA/ATAPI-7
o http://www.t13.org

Serial ATA Revision 2.6
o http://www.sata-io.org
o Automatic Partial to Slumber Technical Proposal: SATA Rev 2.6 Technical Proposal 007

 www.sata-io.org/membersonly.asp

Microsoft’s Storage Device Class Power Management Specification:
o http://www.microsoft.com/hwdev/resources/specs/pmref/default.asp

SAF-TE – SCSI Accessed Fault-Tolerant Enclosure version 1.00 [revision R041497, April 14, 1997].

ANSI INCITS 305-1998, Information Technology – SCSI-3 Enclosure Services (SES) Command Set:
o http://webstore.ansi.org or http://www.t10.org

SGPIO – SFF-8485 Specification for Serial GPIO
o http://www.sffcommittee.org

NVMHCI 1.0 Specification
o http://www.intel.com/standards/nvmhci/index.htm

http://www.pcisig.com/
http://www.pcisig.com/
http://www.t13.org/
http://www.serialata.org/
http://www.sata-io.org/membersonly.asp
http://www.microsoft.com/hwdev/resources/specs/pmref/default.asp
http://www.t10.org/
http://www.sffcommittee.org/
http://www.intel.com/standards/nvmhci/index.htm

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

7

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 8

2 HBA Configuration Registers

This section details how the PCI Header and PCI Capabilities should be constructed for an AHCI HBA.
The fields shown are duplicated from the appropriate PCI specifications. The PCI documents are the
normative specifications for these registers and this section details additional requirements for an AHCI
HBA.

Start (hex) End (hex) Name

00 3F PCI Header

PMCAP PMCAP+7 PCI Power Management Capability

MSICAP MSICAP+9 Message Signaled Interrupt Capability

2.1 PCI Header

Start (hex) End (hex) Symbol Name

00 03 ID Identifiers

04 05 CMD Command Register

06 07 STS Device Status

08 08 RID Revision ID

09 0B CC Class Codes

0C 0C CLS Cache Line Size

0D 0D MLT Master Latency Timer

0E 0E HTYPE Header Type

0F 0F BIST Built In Self Test (Optional)

10 23 BARS Other Base Address Registres (Optional) <BAR0-4>

24 27 ABAR AHCI Base Address <BAR5>

2C 2F SS Subsystem Identifiers

30 33 EROM Expansion ROM Base Address (Optional)

34 34 CAP Capabilities Pointer

3C 3D INTR Interrupt Information

3E 3E MGNT Min Grant (Optional)

3F 3F MLAT Max Latency (Optional)

2.1.1 Offset 00h: ID - Identifiers

Bits Type Reset Description

31:16 RO
Impl.
Spec.

Device ID (DID): Indicates what device number assigned by the vendor.

15:00 RO
Impl.
Spec.

Vendor ID (VID): 16-bit field which indicates the company vendor, assigned by the PCI

SIG.

2.1.2 Offset 04h: CMD - Command

Bit Type Reset Description

15:11 RO 0 Reserved

10 RW 0
Interrupt Disable (ID): Disables the HBA from generating interrupts. This bit does not

have any effect on MSI operation.

09 RW/RO 0
Fast Back-to-Back Enable (FBE): When set to ‘1’, the HBA is allowed to generate fast

back-to-back cycles to different devices.

08 RW/RO 0
SERR# Enable (SEE): When set to ‘1’, the HBA is allowed to generate SERR# on any

event that is enabled for SERR# generation. When cleared to ‘0’, it is not.

07 RO 0 Wait Cycle Enable (WCC): Reserved.

06 RW/RO 0
Parity Error Response Enable (PEE): When set to ‘1’, the HBA shall generate PERR#

when a data parity error is detected.

05 RO 0 VGA Palette Snooping Enable (VGA): Reserved

04 RW/RO
Impl
Spec

Memory Write and Invalidate Enable (MWIE): When set to ‘1’, the HBA is allowed to

use the memory write and invalidate command. This feature is not necessary if the
controller does not generate this command.

03 RO 0 Special Cycle Enable (SCE): Reserved

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

9

02 RW 0

Bus Master Enable (BME): Controls the HBA’s ability to act as a master for data

transfers. When set to ‘1’, bus master activity is allowed. When cleared to ‘0’, the HBA
stops and any active DMA engines return to an idle condition. It is the equivalent of
clearing the memory space start bits (PxCMD.ST) in each port.

01 RW 0 Memory Space Enable (MSE): Controls access to the HBA’s register memory space.

00
RW/
RO

Impl
Spec

I/O Space Enable (IOSE): Controls access to the HBA’s target I/O space. If the HBA

also supports bus master IDE, this bit must be read/write. This bit should be read-only
if bus master IDE is not supported by the HBA.

2.1.3 Offset 06h: STS - Device Status

Bit Type Reset Description

15 RWC 0
Detected Parity Error (DPE): Set to ‘1’ by hardware when the HBA detects a parity

error on its interface.

14 RWC 0
Signaled System Error (SSE): Set to ‘1’ by hardware when the HBA host generates

SERR#.

13 RWC 0
Received Master-Abort (RMA): Set to ‘1’ by hardware when the HBA receives a

master abort to a cycle it generated.

12 RWC 0
Received Target Abort (RTA): Set to ‘1’ by hardware when the HBA receives a target

abort to a cycle it generated.

11 RWC 0
Signaled Target-Abort (STA): Set to ‘1’ by hardware when the HBA terminates with a

target abort.

10:09 RO
Impl.
Spec.

DEVSEL# Timing (DEVT): Controls the device select time for the HBA’s PCI interface.

Refer to the PCI specification for further details.

08 RWC 0

Master Data Pariy Error Detected (DPD): Set to ‘1’ by hardware when the HBA, as a

master, either detects a parity error or sees the parity error line asserted, and the parity
error response bit (bit 6 of the command register) is set to ‘1’.

07 RO
Impl.
Spec.

Fast Back-to-Back Capable (FBC): Indicates whether the HBA can accept fast back-

to-back cycles.

06 RO 0 Reserved

05 RO
Impl.
Spec.

66 MHz Capable (C66): Indicates whether the HBA can operate at 66 MHz.

04 RO 1
Capabilities List (CL): Indicates the presence of a capabilities list. The HBA must

support the PCI power management capability as a minimum.

03 RO 0 Interrupt Status (IS): Indicates the interrupt status of the device (1 = asserted).

02:00 RO 0 Reserved

2.1.4 Offset 08h: RID - Revision ID

Bits Type Reset Description

07:00 RO 00h Revision ID (RID): Indicates stepping of the HBA hardware.

2.1.5 Offset 09h: CC - Class Code

Bits Type Reset Description

23:16 RO 01h Base Class Code (BCC): Indicates that this is a mass storage device.

15:08 RO
Impl
Spec

Sub Class Code (SCC): When set to 06h, indicates that this is a Serial ATA device.

07:00 RO
Impl
Spec

Programming Interface (PI): When set to 01h and the Sub Class Code is set to 06h,

indicates that this is an AHCI HBA that has a major revision of 1 (as specified in the
AHCI Version register).

Informative Note: For HBAs that support RAID, the Sub Class Code reset value should be 04h and the
Programming Interface reset value should be 00h.

2.1.6 Offset 0Ch: CLS – Cache Line Size

Bits Type Reset Description

07:00 RW 00h

Cache Line Size (CLS): Indicates the cache line size for use with the memory write

and invalidate command, and as an indication on when to use the memory read
multiple, memory read line, or memory read commands.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 10

2.1.7 Offset 0Dh: MLT – Master Latency Timer

Bits Type Reset Description

07:00 RW 00h
Master Latency Timer (MLT): Indicates the number of clocks the HBA is allowed to act

as a master on PCI.

2.1.8 Offset 0Eh: HTYPE – Header Type

Bits Type Reset Description

07 RO
Impl
Spec

Multi-Function Device (MFD): Indicates whether the HBA is part of a multi-function

device.

06:00 RO 00h Header Layout (HL): Indicates that the HBA uses a target device layout.

2.1.9 Offset 0Fh: BIST – Built In Self Test (Optional)

The following register is optional, but if implemented, must look as follows.
Bits Type Reset Description

07 RO 1
BIST Capable (BC): Indicates whether the HBA has a BIST function. This does not

indicate SATA BIST capability – this is only for an HBA related BIST function.

06 RW 0
Stat BIST (SB): Software sets this bit to ‘1’ to invoke BIST. The HBA clears this bit to

‘0’ when BIST is complete.

05:04 RO 00 Reserved

03:00 RO 0h
Completion Code (CC): Indicates the completion code status of BIST. A non-zero

value indicates a failure.

2.1.10 Offset 10h – 20h: BARS – Other Base Addresses (Optional)

These registers allocate memory or I/O spaces for other BARs. An example application of these BARs is
to implement the native IDE and bus master IDE ranges for an HBA that wishes to support legacy
software.

2.1.11 Offset 24h: ABAR – AHCI Base Address

This register allocates space for the HBA memory registers defined in section 3. The ABAR must be
allocated to contain enough space for the global AHCI registers, the port specific registers for each port,
and any vendor specific space (if needed). It is permissible to have vendor specific space after the port
specific registers for the last HBA port.

Bit Type Reset Description

31:13 RW 0

Base Address (BA): Base address of register memory space. This represents a

memory space for support of 32 ports. For HBAs that support fewer than 32-ports,
more bits are allowed to be RW, and therefore less memory space is consumed. For
HBAs that have vendor specific space at the end of the port specific memory space,
more bits are allowed to be RO such that more memory space is consumed.

12:04 RO 0 Reserved

03 RO 0 Prefetchable (PF): Indicates that this range is not pre-fetchable

02:01 RO 00 Type (TP): Indicates that this range can be mapped anywhere in 32-bit address space

00 RO 0 Resource Type Indicator (RTE): Indicates a request for register memory space.

2.1.12 Offset 2Ch: SS - Sub System Identifiers

Bits Type Reset Description

31:16 RO
Impl
Spec

Subsystem ID (SSID): Indicates the sub-system identifier.

15:00 RO
Impl
Spec

Subsystem Vendor ID (SSVID): Indicates the sub-system vendor identifier

2.1.13 Offset 30h: EROM – Expansion ROM (Optional)

Bit Type Reset Description

31:00 RW
Impl
Spec

ROM Base Address (RBA): Indicates the base address of the HBA expansion ROM.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

11

2.1.14 Offset 34h: CAP – Capabilities Pointer

Bit Type Reset Description

7:0 RO PMCAP
Capability Pointer (CP): Indicates the first capability pointer offset. It points to

the PCI Power management capability offset.

2.1.15 Offset 3Ch: INTR - Interrupt Information

Bits Type Reset Description

15:08 RO
Impl
Spec

Interrupt Pin (IPIN): This indicates the interrupt pin the HBA uses.

07:00 RW 00h
Interrupt Line (ILINE): Software written value to indicate which interrupt line (vector)

the interrupt is connected to. No hardware action is taken on this register.

Informative Note: If the HBA is a single function PCI device, then INTR.IPIN should be set to 01h to
indicate the INTA# pin.

2.1.16 Offset 3Eh: MGNT – Minimum Grant (Optional)

Bits Type Reset Description

07:00 RO
Impl
Spec

Grant (GNT): Indicates the minimum grant time (in ¼ microseconds) that the device

wishes grant asserted.

2.1.17 Offset 3Fh: MLAT – Maximum Latency (Optional)

Bits Type Reset Description

07:00 RO
Impl
Spec

Latency (LAT): Indicates the maximum latency (in ¼ microseconds) that the device

can withstand.

2.2 PCI Power Management Capabilities

Start (hex) End (hex) Symbol Name

PMCAP PMCAP+1 PID PCI Power Management Capability ID

PMCAP+2 PMCAP+3 PC PCI Power Management Capabilities

PMCAP+4 PMCAP+5 PMCS PCI Power Management Control and Status

2.2.1 Offset PMCAP: PID - PCI Power Management Capability ID

Bit Type Reset Description

15:08 RO
Impl
Spec

Next Capability (NEXT): Indicates the location of the next capability item in the

list. This can be other capability pointers (such as Message Signaled Interrupts,
PCI-X, or PCI-Express) or it can be the last item in the list.

07:00 RO 01h Cap ID (CID): Indicates that this pointer is a PCI power management.

2.2.2 Offset PMCAP + 2h: PC – PCI Power Management Capabilities

Bit Type Reset Description

15:11 RO
Impl
Spec

PME_Support (PSUP): Indicates the states that can generate PME#. The encoding of

this field is as follows:

Bit State

15 When set to ‘1’, PME# can be generated from D3COLD. When cleared
to ‘0’, PME# cannot be generated from D3COLD. This bit may be a ‘1’
or ‘0’ for AHCI HBAs.

14 When set to ‘1’, PME# can be generated from D3HOT. When cleared
to ‘0’, PME# cannot be generated from D3HOT. This bit must be ‘1’ for
AHCI HBAs.

13 This bit must be ‘0’ for AHCI HBAs. D2 is not a supported HBA state.
The behavior is undefined if the HBA is placed in this state.

12 This bit must be ‘0’ for AHCI HBAs. D1 is not a supported HBA state.
The behavior is undefined if the HBA is placed in this state.

11 This bit must be ‘0’ for AHCI HBAs. PME# from D0 is not supported
– interrupts are used in D0.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 12

10 RO 0 D2_Support (D2S): The D2 state is not supported for AHCI HBAs.

09 RO 0 D1_Support (D1S): The D1 state is not supported for AHCI HBAs.

08:06 RO
Impl
Spec

Aux_Current (AUXC): Reports the maximum Suspend well current required when in

the D3COLD state. Refer to the PCI specification for definition of values.

05 RO
Impl
Spec

Device Specific Initialization (DSI): Indicates whether device-specific initialization is

required.

04 RO 0 Reserved

03 RO 0 PME Clock (PMEC): Indicates that PCI clock is not required to generate PME#.

02:00 RO
Impl
Spec

Version (VS): Indicates support for Revision 1.1 or higher revisions of the PCI Power
Management Specification.

2.2.3 Offset PMCAP + 4h: PMCS – PCI Power Management Control And Status

Bit Type Reset Description

15 RWC
Impl
Spec

PME Status (PMES): Set to ‘1’ by hardware when the HBA generates PME#.

If the HBA supports waking from D3COLD, this bit is indeterminate at system boot. If the
HBA does not support waking from D3COLD, this bit is ‘0’ at system boot.

14:09 RO 0 Reserved – AHCI HBA does not implement the data register.

08 RW
Impl
Spec

PME Enable (PMEE): When set to ‘1’, the HBA asserts the PME# signal when PMES

is set to ‘1’.

If the HBA supports waking from D3COLD, this bit is indeterminate at system boot. If the
HBA does not support waking from D3COLD, this bit is ‘0’ at system boot.

07:02 RO 0 Reserved

01:00 R/W 00

Power State (PS): This field is used both to determine the current power state of the

HBA and to set a new power state. The values are:

00 – D0 state
11 – D3HOT state

The D1 and D2 states are not supported for AHCI HBAs. When in the D3HOT state, the
HBA’s configuration space is available, but the register memory spaces are not.
Additionally, interrupts are blocked.

2.3 Message Signaled Interrupt Capability (Optional)

Start (hex) End (hex) Symbol Name

MSICAP MSICAP+1 MID Message Signaled Interrupt Capability ID

MSICAP+2 MSICAP+3 MC Message Signaled Interrupt Message Control

MSICAP+4 MSICAP+7 MA Message Signaled Interrupt Message Address

MSICAP+8 (MC.C64=0)
MSICAP+C (MC.C64=1)

MSICAP+9
MSICAP.D

MD Message Signaled Interrupt Message Data

MSICAP+8 (MC.C64=1) MSICAP+B MUA Message Signaled Interrupt Upper Address (Optional)

2.3.1 Offset MSICAP: MID – Message Signaled Interrupt Identifiers

Bits Type Reset Description

15:08 RO
Impl
Spec

Next Pointer (NEXT): Indicates the next item in the list. This can be other capability

pointers (such as PCI-X or PCI-Express) or it can be the last item in the list.

07:00 RO 05h Capability ID (CID): Capabilities ID indicates MSI.

2.3.2 Offset MSICAP + 2h: MC – Message Signaled Interrupt Message Control

Bits Type Reset Description

15:08 RO 0 Reserved

07 RO
Impl
Spec

64 Bit Address Capable (C64): Specifies whether capable of generating 64-bit

messages.

06:04 RW 000

Multiple Message Enable (MME): Indicates the number of messages the HBA should

assert. See section 10.7.2.2. If the value programmed into this field exceeds the MMC
field in this register, the results are indeterminate.

03:01 RO
Impl
Spec

Multiple Message Capable (MMC): Indicates the number of messages the HBA

wishes to assert. See section 10.7.2.2.

00 RW 0 MSI Enable (MSIE): If set to ‘1’, MSI is enabled and the traditional interrupt pins are not

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

13

used to generate interrupts. If cleared to ‘0’, MSI operation is disabled and the
traditional interrupt pins are used.

2.3.3 Offset MSICAP + 4h: MA – Message Signaled Interrupt Message Address

Bits Type Reset Description

31:02 RW 0
Address (ADDR): Lower 32 bits of the system specified message address, always DW

aligned.

01:00 RO 00 Reserved

2.3.4 Offset MSICAP + (8h or Ch): MD – Message Signaled Interrupt Message Data

Bits Type Reset Description

15:00 RW 0

Data (Data): This 16-bit field is programmed by system software if MSI is enabled. Its

content is driven onto the lower word (PCI AD[15:0]) during the data phase of the MSI
memory write transaction.

2.3.5 Offset MSICAP + 8h: MUA – Message Signaled Interrupt Upper Address (Optional)

Bits Type Reset Description

31:00 RW 0
Upper Address (UADDR): Upper 32 bits of the system specified message
address. This register is optional and only implemented if MC.C64=1.

2.4 Serial ATA Capability (Optional)

This set of registers when supported is used for the Index-Data Pair mechanism described in section
10.14.

Start (hex) End (hex) Symbol Name

SATACAP SATACAP+3 SATACR0 Serial ATA Capability Register 0

SATACAP+4 SATACAP+7 SATACR1 Serial ATA Capability Register 1

2.4.1 Offset SATACAP: SATACR0 – Serial ATA Capability Register 0

Bit Type Reset Description

31:24 RO 0h Reserved

23:20 RO 1h
Major Revision (MAJREV): Major revision number of the SATA Capability

Pointer implemented.

19:16 RO 0h
Minor Revision (MINREV): Minor revision number of the SATA Capability Pointer

implemented.

15:08 RO
Impl
Spec

Next Capability (NEXT): Indicates the location of the next capability item in the

list. This can be other capability pointers (such as Message Signaled Interrupts,
PCI-X, or PCI-Express) or it can be the last item in the list.

07:00 RO 12h Cap ID (CID): Indicates that this pointer is a SATA Capability.

2.4.2 Offset SATACAP + 4h: SATACR1 – Serial ATA Capability Register 1

Bit Type Reset Description

31:24 RO 0 Reserved

23:4 RO
Impl
Spec

BAR Offset (BAROFST): Indicates the offset into the BAR where the Index-Data Pair

are located in Dword granularity. Possible values include:

000h = 0h offset
001h = 4h offset
002h = 8h offset
003h = Ch offset
004h = 10h offset
…
3FFFh = FFFCh offset

Maximum if Index-Data Pair is implemented in IO Space from 0 – 64 KB
3FFFFh = FFFFCh offset

Maximum if Index-Data Pair is memory mapped in the 0 – (1MB – 4) range)

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 14

3:0 RO
Impl
Spec

BAR Location (BARLOC): Indicates the absolute PCI Configuration Register address

of the BAR containing the Index-Data Pair in Dword granularity. Possible values are:

0100b = 10h (BAR0)
0101b = 14h (BAR1)
0110b = 18h (BAR2)
0111b = 1Ch (BAR3)
1000b = 20h (BAR4)
1001b = 24h (BAR5)
1111b = Index-Data Pair is implemented in Dwords directly following SATACR1 in the
PCI configuration space.

All other values are reserved.

2.5 Other Capability Pointers

Though not mentioned in this specification, other capability pointers may be necessary, depending upon
the implementation space. Examples would be the PCI-X capability for PCI-X implementations, PCI-
Express capability for PCI-Express implementations, and potentially the vendor specific capability pointer.

These capabilities are beyond the scope of this specification.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

15

3 HBA Memory Registers

The memory mapped registers within the HBA exist in non-cacheable memory space. Additionally,
locked accesses are not supported. If software attempts to perform locked transactions to the registers,
indeterminate results may occur. Register accesses shall have a maximum size of 64-bits; 64-bit access
must not cross an 8-byte alignment boundary.

The registers are broken into two sections – global registers and port control. All registers that start
below address 100h are global and meant to apply to the entire HBA. The port control registers are the
same for all ports, and there are as many register banks as there are ports.

All registers not defined and all reserved bits within registers return ‘0’ when read.

Start End Description

00h 2Bh Generic Host Control

2Ch 5Fh Reserved

60h 9Fh Reserved for NVMHCI

A0h FFh Vendor Specific registers

100h 17Fh Port 0 port control registers

180h 1FFh Port 1 port control registers

200h FFFh (Ports 2 – port 29 control registers)

1000h 107Fh Port 30 port control registers

1080h 10FFh Port 31 port control registers

3.1 Generic Host Control

The following registers apply to the entire HBA.

Start End Symbol Description

00h 03h CAP Host Capabilities

04h 07h GHC Global Host Control

08h 0Bh IS Interrupt Status

0Ch 0Fh PI Ports Implemented

10h 13h VS Version

14h 17h CCC_CTL Command Completion Coalescing Control

18h 1Bh CCC_PORTS Command Completion Coalsecing Ports

1Ch 1Fh EM_LOC Enclosure Management Location

20h 23h EM_CTL Enclosure Management Control

24h 27h CAP2 Host Capabilities Extended

28h 2Bh BOHC BIOS/OS Handoff Control and Status

3.1.1 Offset 00h: CAP – HBA Capabilities

This register indicates basic capabilities of the HBA to driver software.

Bit Type Reset Description

31 RO
Impl
Spec

Supports 64-bit Addressing (S64A): Indicates whether the HBA can access 64-bit

data structures. When set to ‘1’, the HBA shall make the 32-bit upper bits of the port
DMA Descriptor, the PRD Base, and each PRD entry read/write. When cleared to ‘0’,
these are read-only and treated as ‘0’ by the HBA.

30 RO
Impl
Spec

Supports Native Command Queuing (SNCQ): Indicates whether the HBA supports

Serial ATA native command queuing. If set to ‘1’, an HBA shall handle DMA Setup
FISes natively, and shall handle the auto-activate optimization through that FIS. If
cleared to ‘0’, native command queuing is not supported and software should not issue
any native command queuing commands.

29 RO
Impl
Spec

Supports SNotification Register (SSNTF): When set to ‘1’, the

HBA supports the PxSNTF (SNotification) register and its associated functionality.
When cleared to ‘0’, the HBA does not support the PxSNTF (SNotification) register and
its associated functionality. Refer to section 10.11.1. Asynchronous notification with a
directly attached device is always supported.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 16

Bit Type Reset Description

28 RO HwInit

Supports Mechanical Presence Switch (SMPS): When set to ‘1’, the HBA supports

mechanical presence switches on its ports for use in hot plug operations. When
cleared to ‘0’, this function is not supported. This value is loaded by the BIOS prior to
OS initialization.

27 RO HwInit

Supports Staggered Spin-up (SSS): When set to ‘1’, the HBA supports staggered

spin-up on its ports, for use in balancing power spikes. When cleared to ‘0’, this
function is not supported. This value is loaded by the BIOS prior to OS initiallization.

26 RO
Impl
Spec

Supports Aggressive Link Power Management (SALP): When set to ‘1’, the HBA

can support auto-generating link requests to the Partial or Slumber states when there
are no commands to process. When cleared to ‘0’, this function is not supported and
software shall treat the PxCMD.ALPE and PxCMD.ASP bits as reserved. Refer to
section 8.3.1.3.

25 RO
Impl
Spec

Supports Activity LED (SAL): When set to ‘1’, the HBA supports a single activity

indication output pin. This pin can be connected to an LED on the platform to indicate
device activity on any drive. When cleared to ‘0’, this function is not supported. See
section 10.11 for more information.

24 RO
Impl
Spec

Supports Command List Override (SCLO): When set to ‘1’, the HBA supports the

PxCMD.CLO bit and its associated function. When cleared to ‘0’, the HBA is not
capable of clearing the BSY and DRQ bits in the Status register in order to issue a
software reset if these bits are still set from a previous operation.

23:20 RO
Impl
Spec

Interface Speed Support (ISS): Indicates the maximum speed the HBA can support

on its ports. These encodings match the system software programmable
PxSCTL.DET.SPD field. Values are:

Bits Definition

0000 Reserved

0001 Gen 1 (1.5 Gbps)

0010 Gen 2 (3 Gbps)

0011 Gen 3 (6 Gbps)

0100 - 1111 Reserved

19 RO 0 Reserved

18 RO
Impl
Spec

Supports AHCI mode only (SAM): The SATA controller may optionally support AHCI

access mechanisms only. A value of '0' indicates that in addition to the native AHCI
mechanism (via ABAR), the SATA controller implements a legacy, task-file based
register interface such as SFF-8038i. A value of '1' indicates that the SATA controller
does not implement a legacy, task-file based register interface.

17 RO
Impl
Spec

Supports Port Multiplier (SPM): Indicates whether the HBA can support a Port

Multiplier. When set, a Port Multiplier using command-based switching is supported
and FIS-based switching may be supported. When cleared to ‘0’, a Port Multiplier is not
supported, and a Port Multiplier may not be attached to this HBA.

16 RO
Impl.
Spec

FIS-based Switching Supported (FBSS): When set to ‘1’, indicates that the HBA

supports Port Multiplier FIS-based switching. When cleared to ‘0’, indicates that the
HBA does not support FIS-based switching. This bit shall only be set to ‘1’ if the SPM
bit is set to ‘1’.

15 RO
Impl
Spec

PIO Multiple DRQ Block (PMD): If set to ‘1’, the HBA supports multiple DRQ block

data transfers for the PIO command protocol. If cleared to ‘0’ the HBA only supports
single DRQ block data transfers for the PIO command protocol. AHCI 1.2 HBAs shall
have this bit set to ‘1’.

14 RO
Impl
Spec

Slumber State Capable (SSC): Indicates whether the HBA can support transitions to

the Slumber state. When cleared to ‘0’, software must not allow the HBA to initiate
transitions to the Slumber state via agressive link power management nor the
PxCMD.ICC field in each port, and the PxSCTL.IPM field in each port must be
programmed to disallow device initiated Slumber requests. When set to ‘1’, HBA and
device initiated Slumber requests can be supported.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

17

Bit Type Reset Description

13 RO
Impl
Spec

Partial State Capable (PSC): Indicates whether the HBA can support transitions to the

Partial state. When cleared to ‘0’, software must not allow the HBA to initiate transitions
to the Partial state via agressive link power management nor the PxCMD.ICC field in
each port, and the PxSCTL.IPM field in each port must be programmed to disallow
device initiated Partial requests. When set to ‘1’, HBA and device initiated Partial
requests can be supported.

12:08 RO
Impl
Spec

Number of Command Slots (NCS): 0’s based value indicating the number of

command slots per port supported by this HBA. A minimum of 1 and maximum of 32
slots per port can be supported. The same number of command slots is available on
each implemented port.

07 RO
Impl
Spec

Command Completion Coalescing Supported (CCCS): When set to ‘1’, indicates

that the HBA supports command completion coalescing as defined in section 11. When
command completion coalescing is supported, the HBA has implemented the
CCC_CTL and the CCC_PORTS global HBA registers. When cleared to ‘0’, indicates
that the HBA does not support command completion coalescing and the CCC_CTL and
CCC_PORTS global HBA registers are not implemented.

06 RO
Impl
Spec

Enclosure Management Supported (EMS): When set to ‘1’, indicates that the HBA

supports enclosure management as defined in section 12. When enclosure
management is supported, the HBA has implemented the EM_LOC and EM_CTL
global HBA registers. When cleared to ‘0’, indicates that the HBA does not support
enclosure management and the EM_LOC and EM_CTL global HBA registers are not
implemented.

05 RO
Impl
Spec

Supports External SATA (SXS): When set to ‘1’, indicates that the HBA has one or

more Serial ATA ports that has a signal only connector that is externally accessible
(e.g. eSATA connector). If this bit is set to ‘1’, software may refer to the PxCMD.ESP bit
to determine whether a specific port has its signal connector externally accessible as a
signal only connector (i.e. power is not part of that connector). When the bit is cleared
to ‘0’, indicates that the HBA has no Serial ATA ports that have a signal only connector
externally accessible.

04:00 RO
Impl
Spec

Number of Ports (NP): 0’s based value indicating the maximum number of ports

supported by the HBA silicon. A maximum of 32 ports can be supported. A value of
‘0h’, indicating one port, is the minimum requirement. Note that the number of ports
indicated in this field may be more than the number of ports indicated in the PI register.

3.1.2 Offset 04h: GHC – Global HBA Control

This register controls various global actions of the HBA.

Bit Type Reset Description

31 RW/RO
Impl
Spec

AHCI Enable (AE): When set, indicates that communication to the HBA shall be via

AHCI mechanisms. This can be used by an HBA that supports both legacy
mechanisms (such as SFF-8038i) and AHCI to know when the HBA is running under an
AHCI driver.

When set, software shall only communicate with the HBA using AHCI. When cleared,
software shall only communicate with the HBA using legacy mechanisms. When
cleared FISes are not posted to memory and no commands are sent via AHCI
mechanisms.

Software shall set this bit to ‘1’ before accessing other AHCI registers. When software
clears this bit to ‘0’ from a previous value of ‘1’, it shall set no other bit in the GHC
register as part of that operation (i.e., clearing the AE bit requires software to write
00000000h to the register).

The implementation of this bit is dependent upon the value of the CAP.SAM bit. If
CAP.SAM is '0', then GHC.AE shall be read-write and shall have a reset value of '0'. If
CAP.SAM is '1', then AE shall be read-only and shall have a reset value of '1'.

30:03 RO 0 Reserved

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 18

02 RO 0

MSI Revert to Single Message (MRSM): When set to ‘1’ by hardware, indicates that

the HBA requested more than one MSI vector but has reverted to using the first vector
only. When this bit is cleared to ‘0’, the HBA has not reverted to single MSI mode (i.e.
hardware is already in single MSI mode, software has allocated the number of
messages requested, or hardware is sharing interrupt vectors if MC.MME < MC.MMC).

The HBA may revert to single MSI mode when the number of vectors allocated by the
host is less than the number requested. This bit shall only be set to ‘1’ when the
following conditions hold:

 MC.MSIE = ‘1’ (MSI is enabled)

 MC.MMC > 0 (multiple messages requested)

 MC.MME > 0 (more than one message allocated)

 MC.MME != MC.MMC (messages allocated not equal to number requested)

When this bit is set to ‘1’, single MSI mode operation is in use and software is
responsible for clearing bits in the IS register to clear interrupts.

This bit shall be cleared to ‘0’ by hardware when any of the four conditions stated is

false. This bit is also cleared to ‘0’ when MC.MSIE = ‘1’ and MC.MME = 0h. In this
case, the hardware has been programmed to use single MSI mode, and is not
“reverting” to that mode.

01 RW 0

Interrupt Enable (IE): This global bit enables interrupts from the HBA. When cleared

(reset default), all interrupt sources from all ports are disabled. When set, interrupts are
enabled.

00 RW1 0

HBA Reset (HR): When set by SW, this bit causes an internal reset of the HBA. All

state machines that relate to data transfers and queuing shall return to an idle
condition, and all ports shall be re-initialized via COMRESET (if staggered spin-up is
not supported). If staggered spin-up is supported, then it is the responsibility of
software to spin-up each port after the reset has completed.

When the HBA has performed the reset action, it shall reset this bit to ‘0’. A software
write of ‘0’ shall have no effect. For a description on which bits are reset when this bit is
set, see section 10.4.3.

3.1.3 Offset 08h: IS – Interrupt Status Register

This register indicates which of the ports within the controller have an interrupt pending and require
service.

Bit Type Reset Description

31:0 RWC 0

Interrupt Pending Status (IPS): If set, indicates that the corresponding port has an

interrupt pending. Software can use this information to determine which ports require
service after an interrupt.

The IPS[x] bit is only defined for ports that are implemented or for the command
completion coalescing interrupt defined by CCC_CTL.INT. All other bits are reserved.

3.1.4 Offset 0Ch: PI – Ports Implemented

This register indicates which ports are exposed by the HBA. It is loaded by the BIOS. It indicates which
ports that the HBA supports are available for software to use. For example, on an HBA that supports 6
ports as indicated in CAP.NP, only ports 1 and 3 could be available, with ports 0, 2, 4, and 5 being
unavailable.

Software must not read or write to registers within unavailable ports.

The intent of this register is to allow system vendors to build platforms that support less than the full
number of ports implemented on the HBA silicon.

Bit Type Reset Description

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

19

31:0 RO HwInit

Port Implemented (PI): This register is bit significant. If a bit is set to ‘1’, the

corresponding port is available for software to use. If a bit is cleared to ‘0’, the port is
not available for software to use. The maximum number of bits set to ‘1’ shall not
exceed CAP.NP + 1, although the number of bits set in this register may be fewer than
CAP.NP + 1. At least one bit shall be set to ‘1’.

3.1.5 Offset 10h: VS – AHCI Version

This register indicates the major and minor version of the AHCI specification that the HBA implementation
supports. The upper two bytes represent the major version number, and the lower two bytes represent
the minor version number. Example: Version 3.12 would be represented as 00030102h. Three versions
of the specification are valid: 0.95, 1.0, 1.1, 1.2, 1.3, and 1.3.1.

3.1.5.1 VS Value for 0.95 Compliant HBAs
Bit Type Reset Description

31:16 RO 0000h Major Version Number (MJR): Indicates the major version is “0”

15:00 RO 0905h Minor Version Number (MNR): Indicates the minor version is “95”.

3.1.5.2 VS Value for 1.0 Compliant HBAs
Bit Type Reset Description

31:16 RO 0001h Major Version Number (MJR): Indicates the major version is “1”

15:00 RO 0000h Minor Version Number (MNR): Indicates the minor version is “0”.

3.1.5.3 VS Value for 1.1 Compliant HBAs
Bit Type Reset Description

31:16 RO 0001h Major Version Number (MJR): Indicates the major version is “1”

15:00 RO 0100h Minor Version Number (MNR): Indicates the minor version is “10”.

3.1.5.4 VS Value for 1.2 Compliant HBAs
Bit Type Reset Description

31:16 RO 0001h Major Version Number (MJR): Indicates the major version is “1”

15:00 RO 0200h Minor Version Number (MNR): Indicates the minor version is “20”.

3.1.5.5 VS Value for 1.3 Compliant HBAs
Bit Type Reset Description

31:16 RO 0001h Major Version Number (MJR): Indicates the major version is “1”

15:00 RO 0300h Minor Version Number (MNR): Indicates the minor version is “30”.

3.1.5.6 VS Value for 1.3.1 Compliant HBAs
Bit Type Reset Description

31:16 RO 0001h Major Version Number (MJR): Indicates the major version is “1”

15:00 RO 0301h Minor Version Number (MNR): Indicates the minor version is “31”.

3.1.6 Offset 14h: CCC_CTL – Command Completion Coalescing Control

The command completion coalescing control register is used to configure the command completion
coalescing feature for the entire HBA.

Implementation Note: HBA state variables (examples include hCccComplete and hCccTimer) are used
to describe the required externally visible behavior. Implementations are not required to have internal
state values that directly correspond to these variables.

Bit Type Reset Description

31:16 RW 1

Timeout Value (TV): The timeout value is specified in 1 millisecond intervals. The timer

accuracy shall be within 5%. hCccTimer is loaded with this timeout value. hCccTimer is
only decremented when commands are outstanding on selected ports, as defined in
section 11.2. The HBA will signal a CCC interrupt when hCccTimer has decremented to
‘0’. hCccTimer is reset to the timeout value on the assertion of each CCC interrupt. A
timeout value of ‘0’ is reserved.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 20

15:8 RW 1

Command Completions (CC): Specifies the number of command completions that are

necessary to cause a CCC interrupt. The HBA has an internal command completion
counter, hCccComplete. hCccComplete is incremented by one each time a selected
port has a command completion. When hCccComplete is equal to the command
completions value, a CCC interrupt is signaled. The internal command completion
counter is reset to ‘0’ on the assertion of each CCC interrupt. A value of ‘0’ for this field
shall disable CCC interrupts being generated based on the number of commands
completed, i.e. CCC interrupts are only generated based on the timer in this case.

7:3 RO
 Impl
Spec

Interrupt (INT): Specifies the interrupt used by the CCC feature. This interrupt must be

marked as unused in the Ports Implemented (PI) register by the corresponding bit being
set to ‘0’. Thus, the CCC interrupt corresponds to the interrupt for an unimplemented
port on the controller. When a CCC interrupt occurs, the IS.IPS[INT] bit shall be
asserted to ‘1’. This field also specifies the interrupt vector used for MSI.

2:1 RO 0h Reserved

0 RW 0h

Enable (EN): When cleared to ‘0’, the command completion coalescing feature is

disabled and no CCC interrupts are generated. When set to ‘1’, the command
completion coalescing feature is enabled and CCC interrupts may be generated based
on timeout or command completion conditions. Software shall only change the contents
of the TV and CC fields when EN is cleared to ‘0’. On transition of this bit from ‘0’ to ‘1’,
any updated values for the TV and CC fields shall take effect.

3.1.7 Offset 18h: CCC_PORTS – Command Completion Coalescing Ports

The command completion coalescing ports register is used to specify the ports that are coalesced as part
of the CCC feature when CCC_CTL.EN = ‘1’.

Bit Type Reset Description

31:0 RW 0

Ports (PRT): This register is bit significant. Each bit corresponds to a particular port,

where bit 0 corresponds to port 0. If a bit is set to ‘1’, the corresponding port is part of
the command completion coalescing feature. If a bit is cleared to ‘0’, the port is not part
of the command completion coalescing feature. Bits set to ‘1’ in this register must also
have the corresponding bit set to ‘1’ in the Ports Implemented register. An updated
value for this field shall take effect within one timer increment (1 millisecond).

3.1.8 Offset 1Ch: EM_LOC – Enclosure Management Location

The enclosure management location register identifies the location and size of the enclosure
management message buffer.

Bit Type Reset Description

31:16 RO
Impl
Spec

Offset (OFST): The offset of the message buffer in Dwords from the beginning of the

ABAR.

15:0 RO
Impl
Spec

Buffer Size (SZ): Specifies the size of the transmit message buffer area in Dwords. If

both transmit and receive buffers are supported, then the transmit buffer begins at
ABAR[EM_LOC.OFST*4] and the receive buffer directly follows it. If both transmit and
receive buffers are supported, both buffers are of the size indicated in the Buffer Size
field. A value of ‘0’ is invalid.

3.1.9 Offset 20h: EM_CTL – Enclosure Management Control

This register is used to control and obtain status for the enclosure management interface. The register
includes information on the attributes of the implementation, enclosure management messages
supported, the status of the interface, whether any messages are pending, and is used to initiate sending
messages.

Bit Type Reset Description

31:28 RO 0 Reserved

27 RO
Impl
Spec

Port Multiplier Support (ATTR.PM): If set to ‘1’, the HBA supports enclosure

management messages for devices attached via a Port Multiplier. If cleared to ‘0’, the
HBA does not support enclosure management messages for devices attached via a
Port Multiplier. When cleared to ‘0’, software should use the Serial ATA enclosure
management bridge that is built into many Port Multipliers for enclosure services with
these devices. For more information on Serial ATA enclosure management bridges,
refer to the Serial ATA Revision 2.6 specification.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

21

Bit Type Reset Description

26 RO
Impl
Spec

Activity LED Hardware Driven (ATTR.ALHD): If set to ‘1’, the HBA drives the activity

LED for the LED message type in hardware and does not utilize software settings for
this LED. The HBA does not begin transmitting the hardware based activity signal until
after software has written CTL.TM=1 after a reset condition.

25 RO
Impl
Spec

Transmit Only (ATTR.XMT): If set to ‘1’, the HBA only supports transmitting

messages and does not support receiving messages. If cleared to ‘0’, the HBA
supports transmitting and receiving messages.

24 RO
Impl
Spec

Single Message Buffer (ATTR.SMB): If set to ‘1’, the HBA has one message buffer

that is shared for messages to transmit and messages received. In this case,
unsolicited receive messages are not supported and it is software’s responsibility to
manage access to this buffer. If cleared to ‘0’, there are separate receive and transmit
buffers such that unsolicited messages could be supported.

23:20 RO 0 Reserved

19 RO
Impl
Spec

SGPIO Enclosure Management Messages (SUPP.SGPIO): If set to ‘1’, the HBA

supports the SGPIO register interface message type.

18 RO
Impl
Spec

SES-2 Enclosure Management Messages (SUPP.SES2): If set to ‘1’, the HBA

supports the SES-2 message type.

17 RO
Impl
Spec

SAF-TE Enclosure Management Messages (SUPP.SAFTE): If set to ‘1’, the HBA

supports the SAF-TE message type.

16 RO
Impl
Spec

LED Message Types (SUPP.LED): If set to ‘1’, the HBA supports the LED message

type defined in section 12.2.1.

15:10 RO 0 Reserved

09 RW1 0

Reset (CTL.RST): When set to ‘1’ by software, the HBA shall reset all enclosure

management message logic and the attached enclosure processor (if applicable) and
take all appropriate reset actions to ensure messages can be transmitted/received after
the reset. After the HBA completes the reset operation, the HBA shall set the value to
‘0’. A write of ‘0’ by software to this field shall have no effect.

08 RW1 0

Transmit Message (CTL.TM): When set to ‘1’ by software, the HBA shall transmit the

message contained in the message buffer. When the message is completely sent, the
HBA shall clear this bit to ‘0’. A write of ‘0’ to this bit by software shall have no effect.
Software shall not change the contents of the message buffer while CTL.TM is set to
‘1’.

07:01 RO 0 Reserved

00 RWC 0

Message Received (STS.MR): The HBA sets this bit to a ‘1’ when a message is

completely received into the message buffer. When software detects this bit is a ‘1’,
software should read the message and perform any actions necessary. When software
is finished reading the message in the buffer, software writes a ‘1’ to this bit in order to
clear it. A write of ‘0’ to this bit by software shall have no effect.

3.1.10 Offset 24h: CAP2 – HBA Capabilities Extended

This register indicates capabilities of the HBA to driver software.

Bit Type Reset Description

31:06 RO 0h Reserved

5 RO
Impl
Spec

DevSleep Entrance from Slumber Only (DESO): This field specifies that the HBA

shall only assert the DEVSLP signal if the interface is in Slumber. When this bit is set
to ‘1’, the HBA shall ingnore software directed entrance to DevSleep via PxCMD.ICC
unless PxSSTS.IPM = 6h.
When this bit is cleared to ‘0’, the HBA may enter DevSleep from any link state (active,
Partial, or Slumber).

04 RO Impl
Spec

Supports Aggressive Device Sleep Management (SADM): When set to ‘1’, the HBA

supports hardware assertion of the DEVSLP signal after the idle timeout expires. When
cleared to ‘0’, this function is not supported and software shall treat the
PxDEVSLP.ADSE field as reserved. Refer to section 8.5.1.

03 RO Impl
Spec

Supports Device Sleep (SDS): When set to ‘1’, the HBA supports the Device Sleep

feature. When cleared to ‘0’, DEVSLP is not supported and software shall not set
PxCMD.ICC to ‘8h’

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 22

Bit Type Reset Description

02 RO
Impl
Spec

Automatic Partial to Slumber Transitions (APST): When set to ‘1’, the HBA supports

Automatic Partial to Slumber Transitions. When cleared to ‘0’, Automatic Partial to
Slumber Transitions are not supported. Please refer to section 10.16 for more
information regarding Automatic Partial to Slumber transitions.

01 RO
Impl
Spec

NVMHCI Present (NVMP): When set to ‘1’, the HBA includes support for NVMHCI and

the registers at offset 60h-9Fh are valid. When cleared to ‘0’, the HBA does not support
NVMHCI. Please refer to section 10.15 for more information regarding NVMHCI.

00 RO
Impl.
Spec.

BIOS/OS Handoff (BOH): When set to ‘1’, the HBA supports the BIOS/OS handoff

mechanism defined in section 10.6. When cleared to ‘0’, the HBA does not support the
BIOS/OS handoff mechanism. When BIOS/OS handoff is supported, the HBA has
implemented the BOHC global HBA register. When cleared to ‘0’, it indicates that the
HBA does not support BIOS/OS handoff and the BOHC global HBA register is not
implemented.

3.1.11 Offset 28h: BOHC – BIOS/OS Handoff Control and Status

This register controls various global actions of the HBA. This register is not affected by an HBA reset.

Bit Type Reset Description

31:05 RO 0h Reserved

04 RW 0
BIOS Busy (BB): This bit is used by the BIOS to indicate that it is busy cleaning up for

ownership change.

03 RWC 0
OS Ownership Change (OOC): This bit is set to ‘1’ when the OOS bit transitions from

‘0’ to ‘1’. This bit is cleared by writing a ‘1’ to it. Writing ‘0’ has no effect on it.

02 RW 0
SMI on OS Ownership Change Enable (SOOE): This bit, when set to ‘1’, enables an

SMI when the OOC bit has been set to ‘1’.

01 RW 0

OS Owned Semaphore (OOS): The system software sets this bit to request ownership

of the HBA controller. Ownership is obtained when this bit reads ‘1’ and the BOS bit
reads ‘0’.

00 RW 0

BIOS Owned Semaphore (BOS): The BIOS sets this bit to establish ownership of the

HBA controller. BIOS will clear this bit in response to a request for ownership of the HBA
by system software via OOS.

3.2 Vendor Specific Registers

Registers at offset A0h to FFh are vendor specific.

3.3 Port Registers (one set per port)

The following registers describe the registers necessary to implement per port; all ports shall have the
same register mapping. Port 0 starts at 100h, port 1 starts at 180h, port 2 starts at 200h, port 3 at 280h,
etc. The algorithm for software to determine the offset is as follows:

 Port offset = 100h + (PI Asserted Bit Position * 80h)

Start End Symbol Description

00h 03h PxCLB Port x Command List Base Address

04h 07h PxCLBU Port x Command List Base Address Upper 32-Bits

08h 0Bh PxFB Port x FIS Base Address

0Ch 0Fh PxFBU Port x FIS Base Address Upper 32-Bits

10h 13h PxIS Port x Interrupt Status

14h 17h PxIE Port x Interrupt Enable

18h 1Bh PxCMD Port x Command and Status

1Ch 1Fh Reserved Reserved

20h 23h PxTFD Port x Task File Data

24h 27h PxSIG Port x Signature

28h 2Bh PxSSTS Port x Serial ATA Status (SCR0: SStatus)

2Ch 2Fh PxSCTL Port x Serial ATA Control (SCR2: SControl)

30h 33h PxSERR Port x Serial ATA Error (SCR1: SError)

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

23

34h 37h PxSACT Port x Serial ATA Active (SCR3: SActive)

38h 3Bh PxCI Port x Command Issue

3Ch 3Fh PxSNTF Port x Serial ATA Notification (SCR4: SNotification)

40h 43h PxFBS Port x FIS-based Switching Control

44h 47h PxDEVSLP Port x Device Sleep

48h 6Fh Reserved Reserved

70h 7Fh PxVS Port x Vendor Specific

3.3.1 Offset 00h: PxCLB – Port x Command List Base Address

Bit Type Reset Description

31:10 RW
Impl
Spec

Command List Base Address (CLB): Indicates the 32-bit base physical address for

the command list for this port. This base is used when fetching commands to execute.
The structure pointed to by this address range is 1K-bytes in length. This address must
be 1K-byte aligned as indicated by bits 09:00 being read only.

09:00 RO 0 Reserved

3.3.2 Offset 04h: PxCLBU – Port x Command List Base Address Upper 32-bits

Bit Type Reset Description

31:00
RW/
RO

Impl
Spec

Command List Base Address Upper (CLBU): Indicates the upper 32-bits for the

command list base physical address for this port. This base is used when fetching
commands to execute.

This register shall be read only ‘0’ for HBAs that do not support 64-bit addressing.

3.3.3 Offset 08h: PxFB – Port x FIS Base Address

Bit Type Reset Description

31:08 RW
Impl
Spec

FIS Base Address (FB): Indicates the 32-bit base physical address for received

FISes. The structure pointed to by this address range is 256 bytes in length. This
address must be 256-byte aligned as indicated by bits 07:00 being read only. When
FIS-based switching is in use, this structure is 4KB in length and the address shall be
4KB aligned (refer to section 9.3.3).

07:00 RO 0 Reserved

3.3.4 Offset 0Ch: PxFBU – Port x FIS Base Address Upper 32-bits

Bit Type Reset Description

31:00
RW/
RO

Impl
Spec

FIS Base Address Upper (FBU): Indicates the upper 32-bits for the received FIS base

physical address for this port.

This register shall be read only ‘0’ for HBAs that do not support 64-bit addressing.

3.3.5 Offset 10h: PxIS – Port x Interrupt Status

Bit Type Reset Description

31 RWC 0

Cold Port Detect Status (CPDS): When set, a device status has changed as detected

by the cold presence detect logic. This bit can either be set due to a non-connected
port receiving a device, or a connected port having its device removed. This bit is only
valid if the port supports cold presence detect as indicated by PxCMD.CPD set to ‘1’.

30 RWC 0
Task File Error Status (TFES): This bit is set whenever the status register is updated

by the device and the error bit (bit 0 of the Status field in the received FIS) is set.

29 RWC 0

Host Bus Fatal Error Status (HBFS): Indicates that the HBA encountered a host bus

error that it cannot recover from, such as a bad software pointer. In PCI, such an
indication would be a target or master abort.

28 RWC 0
Host Bus Data Error Status (HBDS): Indicates that the HBA encountered a data error

(uncorrectable ECC / parity) when reading from or writing to system memory.

27 RWC 0
Interface Fatal Error Status (IFS): Indicates that the HBA encountered an error on

the Serial ATA interface which caused the transfer to stop. Refer to section 6.1.2.

26 RWC 0
Interface Non-fatal Error Status (INFS): Indicates that the HBA encountered an error

on the Serial ATA interface but was able to continue operation. Refer to section 6.1.2.

25 RO 0 Reserved

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 24

Bit Type Reset Description

24 RWC 0
Overflow Status (OFS): Indicates that the HBA received more bytes from a device

than was specified in the PRD table for the command.

23 RWC 0

Incorrect Port Multiplier Status (IPMS): Indicates that the HBA received a FIS from a

device that did not have a command outstanding. The IPMS bit may be set during
enumeration of devices on a Port Multiplier due to the normal Port Multiplier
enumeration process. It is recommended that IPMS only be used after enumeration is
complete on the Port Multiplier. IPMS is not set when an asynchronous notification is
received (a Set Device Bits FIS with the Notification ‘N’ bit set to ‘1’).

22 RO 0

PhyRdy Change Status (PRCS): When set to ‘1’ indicates the internal PhyRdy signal

changed state. This bit reflects the state of PxSERR.DIAG.N. To clear this bit,
software must clear PxSERR.DIAG.N to ‘0’.

21:08 RO 0 Reserved

07 RWC 0

Device Mechanical Presence Status (DMPS): When set, indicates that a mechanical

presence switch associated with this port has been opened or closed, which may lead
to a change in the connection state of the device. This bit is only valid if both
CAP.SMPS and PxCMD.MPSP are set to ‘1’.

06 RO 0

Port Connect Change Status (PCS): 1=Change in Current Connect Status. 0=No
change in Current Connect Status. This bit reflects the state of PxSERR.DIAG.X. This
bit is only cleared when PxSERR.DIAG.X is cleared.

05 RWC 0
Descriptor Processed (DPS): A PRD with the ‘I’ bit set has transferred all of its data.

Refer to section 5.4.2.

04 RO 0

Unknown FIS Interrupt (UFS): When set to ‘1’, indicates that an unknown FIS was

received and has been copied into system memory. This bit is cleared to ‘0’ by
software clearing the PxSERR.DIAG.F bit to ‘0’. Note that this bit does not directly
reflect the PxSERR.DIAG.F bit. PxSERR.DIAG.F is set immediately when an unknown
FIS is detected, whereas this bit is set when that FIS is posted to memory. Software
should wait to act on an unknown FIS until this bit is set to ‘1’ or the two bits may
become out of sync.

03 RWC 0
Set Device Bits Interrupt (SDBS): A Set Device Bits FIS has been received with the

‘I’ bit set and has been copied into system memory.

02 RWC 0
DMA Setup FIS Interrupt (DSS): A DMA Setup FIS has been received with the ‘I’ bit

set and has been copied into system memory.

01 RWC 0

PIO Setup FIS Interrupt (PSS): A PIO Setup FIS has been received with the ‘I’ bit set,

it has been copied into system memory, and the data related to that FIS has been
transferred. This bit shall be set even if the data transfer resulted in an error.

00 RWC 0
Device to Host Register FIS Interrupt (DHRS): A D2H Register FIS has been

received with the ‘I’ bit set, and has been copied into system memory.

3.3.6 Offset 14h: PxIE – Port x Interrupt Enable

This register enables and disables the reporting of the corresponding interrupt to system software. When
a bit is set (‘1’) and the corresponding interrupt condition is active, then an interrupt is generated. Interrupt
sources that are disabled (‘0’) are still reflected in the status registers. This register is symmetrical with
the PxIS register.

Bit Type Reset Description

31
RW/
RO

0

Cold Presence Detect Enable (CPDE): When set, GHC.IE is set, and PxS.CPDS is

set, the HBA shall generate an interrupt. For systems that do not support cold presence
detect, this bit shall be a read-only ‘0’.

30 RW 0
Task File Error Enable (TFEE): When set, GHC.IE is set, and PxS.TFES is set, the

HBA shall generate an interrupt.

29 RW 0
Host Bus Fatal Error Enable (HBFE): When set, GHC.IE is set, and PxIS.HBFS is

set, the HBA shall generate an interrupt.

28 RW 0
Host Bus Data Error Enable (HBDE): when set, GHC.IE is set, and PxIS.HBDS is

set, the HBA shall generate an interrupt..

27 RW 0
Interface Fatal Error Enable (IFE): When set, GHC.IE is set, and PxIS.IFS is set, the

HBA shall generate an interrupt..

26 RW 0
Interface Non-fatal Error Enable (INFE): When set, GHC.IE is set, and PxIS.INFS is

set, the HBA shall generate an interrupt.

25 RO 0 Reserved

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

25

24 RW 0
Overflow Enable (OFE): When set, and GHC.IE and PxIS.OFS are set, the HBA shall

generate an interupt.

23 RW 0
Incorrect Port Multiplier Enable (IPME): When set, and GHC.IE and PxIS.IPMS are

set, the HBA shall generate an interupt.

22 RW 0
PhyRdy Change Interrupt Enable (PRCE): When set to ‘1’, and GHC.IE is set to ‘1’,

and PxIS.PRCS is set to ‘1’, the HBA shall generate an interrupt.

21:08 RO 0 Reserved

07
RW/
RO

0

Device Mechanical Presence Enable (DMPE): When set, and GHC.IE is set to ‘1’,

and PxIS.DMPS is set, the HBA shall generate an interrupt. For systems that do not
support a mechanical presence switch, this bit shall be a read-only ‘0’.

06 RW 0
Port Change Interrupt Enable (PCE): When set, GHC.IE is set, and PxIS.PCS is set,

the HBA shall generate an interrupt.

05 RW 0
Descriptor Processed Interrupt Enable (DPE): When set, GHC.IE is set, and

PxIS.DPS is set, the HBA shall generate an interrupt.

04 RW 0
Unknown FIS Interrupt Enable (UFE): When set, GHC.IE is set, and PxIS.UFS is set

to ‘1’, the HBA shall generate an interrupt.

03 RW 0
Set Device Bits FIS Interrupt Enable (SDBE): When set, GHC.IE is set, and

PxIS.SDBS is set, the HBA shall generate an interrupt.

02 RW 0
DMA Setup FIS Interrupt Enable (DSE): When set, GHC.IE is set, and PxIS.DSS is

set, the HBA shall generate an interrupt.

01 RW 0
PIO Setup FIS Interrupt Enable (PSE): When set, GHC.IE is set, and PxIS.PSS is

set, the HBA shall generate an interrupt.

00 RW 0
Device to Host Register FIS Interrupt Enable (DHRE): When set, GHC.IE is set,

and PxIS.DHRS is set, the HBA shall generate an interrupt.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 26

3.3.7 Offset 18h: PxCMD – Port x Command and Status

Bit Type Reset Description

31:28 RW 0h

Interface Communication Control (ICC): This field is used to control power

management states of the interface. If the Link layer is currently in the L_IDLE state, or
L_NoCommPower state, writes to this field shall cause the HBA to initiate a transition to
the interface power management state requested. If the Link layer is not currently in
the L_IDLE state or L_NoCommPower state, writes to this field shall have no effect.

Value Definition
Fh - 9h

8h
Reserved
DevSleep: This shall cause the HBA to assert the DEVSLP signal

associated with the port; the HBA shall ignore the Device Sleep Idle
Timeout value specified by PxDEVSLP.DITO. Software shall only
request DevSleep when the interface is in an idle state (i.e. PxCI is
cleared to 0h and PxSACT are cleared to 0h); if CAP2.SDS is cleared
to ‘0’ or if the interface is not idle at the time the register is written,
then the HBA shall not assert the DEVSLP signal and the interface
remains in its current state. If CAPS.SDS is set to ‘1’, CAP2.DESO is
set to ‘1’, and PxSSTS.IPM is not set to ‘6h’, then the HBA shall not
assert the DEVSLP signal and the interface shall remain in its current
state. Additionally, the HBA shall not assert the DEVSLP signal until
PHYRDY has been achieved (after a previous de-assertion).

7h Reserved
Fh - 7h Reserved

6h Slumber: This shall cause the HBA to request a transition of the

interface to the Slumber state. The SATA device may reject the
request and the interface shall remain in its current state.

5h - 3h Reserved

2h Partial: This shall cause the HBA to request a transition of the

interface to the Partial state. The SATA device may reject the
request and the interface shall remain in its current state.

1h Active: This shall cause the HBA to request a transition of the

interface into the active state.
0h No-Op / Idle: When software reads this value, it indicates the HBA is

ready to accept a new interface control command, although the
transition to the previously selected state may not yet have occurred.

When system software writes a non-reserved value other than No-Op (0h), the HBA
shall perform the actions described above (for the value written) and update this field
back to Idle (0h).

If software writes to this field to change the state to a state the link is already in (i.e.
interface is in the active state and a request is made to go to the active state), the HBA
shall take no action and return this field to Idle. For all but DevSleep, if the interface is
in a low power state and software wants to transition to a different low power state,
software must first bring the link to active and then initiate the transition to the desired
low power state. If CAPS2.DESO is cleared to ‘0’, transition to DevSleep may occur
from any other interface state. If CAP2.DESO is set to ‘1’, then DevSleep may only be
transitioned to if the interface is in Slumber.

27
RW/
RO

0

Aggressive Slumber / Partial (ASP): When set to ‘1’, and ALPE is set, the HBA shall

aggressively enter the Slumber state when it clears the PxCI register and the PxSACT
register is cleared or when it clears the PxSACT register and PxCI is cleared. When
cleared, and ALPE is set, the HBA shall aggressively enter the Partial state when it
clears the PxCI register and the PxSACT register is cleared or when it clears the
PxSACT register and PxCI is cleared. If CAP.SALP is cleared to ‘0’ software shall treat
this bit as reserved. See section 8.3.1.3 for details.

26
RW/
RO

0

Aggressive Link Power Management Enable (ALPE): When set to ‘1’, the HBA shall

aggressively enter a lower link power state (Partial or Slumber) based upon the setting
of the ASP bit. Software shall only set this bit to ‘1’ if CAP.SALP is set to ‘1’; if
CAP.SALP is cleared to ‘0’ software shall treat this bit as reserved. See section 8.3.1.3
for details.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

27

Bit Type Reset Description

25 RW 0

Drive LED on ATAPI Enable (DLAE): When set to ‘1’, the HBA shall drive the LED

pin active for commands regardless of the state of PxCMD.ATAPI. When cleared, the
HBA shall only drive the LED pin active for commands if PxCMD.ATAPI set to ‘0’. See
section 10.11 for details on the activity LED.

24 RW 0

Device is ATAPI (ATAPI): When set to ‘1’, the connected device is an ATAPI device.

This bit is used by the HBA to control whether or not to generate the desktop LED when
commands are active. See section 10.11 for details on the activity LED.

23 RW 0

Automatic Partial to Slumber Transitions Enabled (APSTE): When set to ‘1’, the

HBA may perform Automatic Partial to Slumber Transitions. When cleared to ‘0’ the
port shall not perform Automatic Partial to Slumber Transitions. Software shall only set
this bit to ‘1’ if CAP2.APST is set to ‘1’; if CAP2.APST is cleared to ‘0’ software shall
treat this bit as reserved.

22 RO HwInit

FIS-based Switching Capable Port (FBSCP): When set to ‘1’, indicates that this port

supports Port Multiplier FIS-based switching. When cleared to ‘0’, indicates that this
port does not support FIS-based switching. This bit may only be set to ‘1’ if both
CAP.SPM and CAP.FBSS are set to ‘1’.

21 RO HwInit

External SATA Port (ESP): When set to '1', indicates that this port’s signal connector

is externally accessible on a signal only connector (e.g. eSATA connector). When set to
'1', CAP.SXS shall be set to '1'. When cleared to ‘0’, indicates that this port’s signal
connector is not externally accessible on a signal only connector. ESP is mutually
exclusive with the HPCP bit in this register. If ESP is set to ‘1’, then the port may
experience hot plug events.

20 RO HwInit

Cold Presence Detection (CPD): If set to ‘1’, the platform supports cold presence

detection on this port. If cleared to ‘0’, the platform does not support cold presence
detection on this port.

19 RO HwInit

Mechanical Presence Switch Attached to Port (MPSP): If set to ‘1’, the platform

supports an mechanical presence switch attached to this port. If cleared to ‘0’, the
platform does not support a mechanical presence switch attached to this port.

18 RO HwInit

Hot Plug Capable Port (HPCP): When set to ‘1’, indicates that this port’s signal and

power connectors are externally accessible via a joint signal and power connector for
blindmate device hot plug. When cleared to ‘0’, indicates that this port’s signal and
power connectors are not externally accessible via a joint signal and power connector.
HPCP is mutually exclusive with the ESP bit in this register.

17
RW/
RO

0

Port Multiplier Attached (PMA): This bit is read/write for HBAs that support a Port

Multiplier (CAP.SPM = ‘1’). This bit is read-only for HBAs that do not support a port
Multiplier (CAP.SPM = ‘0’). When set to ‘1’ by software, a Port Multiplier is attached to
the HBA for this port. When cleared to ‘0’ by software, a Port Multiplier is not attached
to the HBA for this port. Software is responsible for detecting whether a Port Multiplier
is present; hardware does not auto-detect the presence of a Port Multiplier. Software
shall only set this bit to ‘1’ when PxCMD.ST is cleared to ‘0’.

16 RO
See
Desc

Cold Presence State (CPS): The CPS bit reports whether a device is currently

detected on this port via cold presence detection. If CPS is set to ‘1’, then the HBA
detects via cold presence that a device is attached to this port. If CPS is cleared to ‘0’ ,
then the HBA detects via cold presence that there is no device attached to this port.

15 RO 0

Command List Running (CR): When this bit is set, the command list DMA engine for

the port is running. See the AHCI state machine in section 5.3.2 for details on when
this bit is set and cleared by the HBA.

14 RO 0
FIS Receive Running (FR): When set, the FIS Receive DMA engine for the port is

running. See section 10.3.2 for details on when this bit is set and cleared by the HBA.

13 RO
See
Desc

Mechanical Presence Switch State (MPSS): The MPSS bit reports the state of a

mechanical presence switch attached to this port. If CAP.SMPS is set to ‘1’ and the
mechanical presence switch is closed then this bit is cleared to ‘0’. If CAP.SMPS is set
to ‘1’ and the mechanical presence switch is open then this bit is set to ‘1’. If
CAP.SMPS is set to ‘0’ then this bit is cleared to ‘0’. Software should only use this bit if
both CAP.SMPS and PxCMD.MPSP are set to ‘1’.

12:08 RO 0h

Current Command Slot (CCS): This field is valid when PxCMD.ST is set to ‘1’ and

shall be set to the command slot value of the command that is currently being issued by
the HBA. When PxCMD.ST transitions from ‘1’ to ‘0’, this field shall be reset to ‘0’.
After PxCMD.ST transitions from ‘0’ to ‘1’, the highest priority slot to issue from next is
command slot 0.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 28

Bit Type Reset Description

07:05 RO 0 Reserved

04 RW 0

FIS Receive Enable (FRE): When set, the HBA may post received FISes into the FIS

receive area pointed to by PxFB (and for 64-bit HBAs, PxFBU). When cleared,
received FISes are not accepted by the HBA, except for the first D2H register FIS after
the initialization sequence, and no FISes are posted to the FIS receive area.

System software must not set this bit until PxFB (PxFBU) have been programmed with
a valid pointer to the FIS receive area, and if software wishes to move the base, this bit
must first be cleared, and software must wait for the FR bit in this register to be cleared.
Refer to section 10.3.2 for important restrictions on when FRE can be set and cleared.

03 RW1 0

Command List Override (CLO): Setting this bit to ‘1’ causes PxTFD.STS.BSY and

PxTFD.STS.DRQ to be cleared to ‘0’. This allows a software reset to be transmitted to
the device regardless of whether the BSY and DRQ bits are still set in the PxTFD.STS
register. The HBA sets this bit to ‘0’ when PxTFD.STS.BSY and PxTFD.STS.DRQ
have been cleared to ‘0’. A write to this register with a value of ‘0’ shall have no effect.

This bit shall only be set to ‘1’ immediately prior to setting the PxCMD.ST bit to ‘1’ from
a previous value of ‘0’. Setting this bit to ‘1’ at any other time is not supported and will
result in indeterminate behavior. Software must wait for CLO to be cleared to ‘0’ before
setting PxCMD.ST to ‘1’.

02
RW/
RO

0/1

Power On Device (POD): This bit is read/write for HBAs that support cold presence

detection on this port as indicated by PxCMD.CPD set to ‘1’. This bit is read only ‘1’ for
HBAs that do not support cold presence detect. When set, the HBA sets the state of a
pin on the HBA to ‘1’ so that it may be used to provide power to a cold-presence
detectable port.

01
RW/
RO

0/1

Spin-Up Device (SUD): This bit is read/write for HBAs that support staggered spin-up

via CAP.SSS. This bit is read only ‘1’ for HBAs that do not support staggered spin-up.
On an edge detect from ‘0’ to ‘1’, the HBA shall start a COMRESET initializatoin
sequence to the device. Clearing this bit to ‘0’ does not cause any OOB signal to be
sent on the interface. When this bit is cleared to ‘0’ and PxSCTL.DET=0h, the HBA will
enter listen mode as detailed in section 10.10.1.

00 RW 0

Start (ST): When set, the HBA may process the command list. When cleared, the

HBA may not process the command list. Whenever this bit is changed from a ‘0’ to a
‘1’, the HBA starts processing the command list at entry ‘0’. Whenever this bit is
changed from a ‘1’ to a ‘0’, the PxCI register is cleared by the HBA upon the HBA
putting the controller into an idle state. This bit shall only be set to ‘1’ by software after
PxCMD.FRE has been set to ‘1’. Refer to section 10.3.1 for important restrictions on
when ST can be set to ‘1’.

3.3.8 Offset 20h: PxTFD – Port x Task File Data

This is a 32-bit register that copies specific fields of the task file when FISes are received. The FISes that
contain this information are:

 D2H Register FIS

 PIO Setup FIS

 Set Device Bits FIS (BSY and DRQ are not updated with this FIS)

Bit Type Reset Description

31:16 RO 0 Reserved

15:08 RO 0 Error (ERR): Contains the latest copy of the task file error register.

07:00 RO 7Fh

Status (STS): Contains the latest copy of the task file status register. Fields of note in

this register that affect AHCI hardware operation are:

Bit Field Definition

7 BSY Indicates the interface is busy

6:4 cs Command specific

3 DRQ Indicates a data transfer is requested

2:1 cs Command specific

0 ERR Indicates an error during the transfer.

The HBA shall update the entire 8-bit field, not just the bits noted above.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

29

3.3.9 Offset 24h: PxSIG – Port x Signature

This is a 32-bit register which contains the initial signature of an attached device when the first D2H
Register FIS is received from that device. It is updated once after a reset sequence.

Bit Type Reset Description

31:00 RO FFFFFFFFh

Signature (SIG): Contains the signature received from a device on the first

D2H Register FIS. The bit order is as follows:

Bit Field

31:24 LBA High Register

23:16 LBA Mid Register

15:08 LBA Low Register

07:00 Sector Count Register

3.3.10 Offset 28h: PxSSTS – Port x Serial ATA Status (SCR0: SStatus)

This 32-bit register conveys the current state of the interface and host. The HBA updates it continuously
and asynchronously. When the HBA transmits a COMRESET to the device, this register is updated to its
reset values.

Bit Type Reset Description

31:12 RO 0 Reserved

11:08 RO 0

Interface Power Management (IPM): Indicates the current interface state:

 0h Device not present or communication not established
 1h Interface in active state
 2h Interface in Partial power management state
 6h Interface in Slumber power management state
 8h Interface in DevSleep power management state

All other values reserved

07:04 RO 0

Current Interface Speed (SPD): Indicates the negotiated interface communication

speed.

 0h Device not present or communication not established
 1h Generation 1 communication rate negotiated
 2h Generation 2 communication rate negotiated
 3h Generation 3 communication rate negotiated

All other values reserved

03:00 RO 0

Device Detection (DET): Indicates the interface device detection and Phy state.
1

 0h No device detected and Phy communication not established
 1h Device presence detected but Phy communication not established
 3h Device presence detected and Phy communication established
 4h Phy in offline mode as a result of the interface being disabled or running in a

BIST loopback mode

All other values reserved

1. The means by which the implementation determines device presence may be vendor specific. However, device
presence shall always be indicated anytime a COMINIT signal is received.

3.3.11 Offset 2Ch: PxSCTL – Port x Serial ATA Control (SCR2: SControl)

This is a 32-bit read-write register by which software controls SATA capabilities. Writes to this register
result in an action being taken by the host adapter or interface. Reads from the register return the last
value written to it.

Bit Type Reset Description

31:20 RO 0 Reserved

19:16 RO 0h Port Multiplier Port (PMP): This field is not used by AHCI.

15:12 RO 0h Select Power Management (SPM): This field is not used by AHCI

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 30

11:08 RW 0h

Interface Power Management Transitions Allowed (IPM): Indicates which power

states the HBA is allowed to transition to. If an interface power management state is
disabled, the HBA is not allowed to initiate that state and the HBA must PMNAKP any
request from the device to enter that state.

 0h No interface restrictions
 1h Transitions to the Partial state disabled
 2h Transitions to the Slumber state disabled
 3h Transitions to both Partial and Slumber states disabled
 4h Transitions to the DevSleep power management state are disabled
 5h Transitions to the Partial and DevSleep power management states
 are disabled
 6h Transitions to the Slumber and DevSleep power management states
 are disabled
 7h Transitions to the Partial, Slumber and DevSleep power management
 states are disabled

All other values reserved

07:04 RW 0h

Speed Allowed (SPD): Indicates the highest allowable speed of the interface.

 0h No speed negotiation restrictions
 1h Limit speed negotiation to Generation 1 communication rate
 2h Limit speed negotiation to a rate not greater than Generation 2

communication rate
 3h Limit speed negotiation to a rate not greater than Generation 3

communication rate

All other values reserved

03:00 RW 0h

Device Detection Initialization (DET): Controls the HBA’s device detection and

interface initialization.

 0h No device detection or initialization action requested
 1h Perform interface communication initialization sequence to establish

communication. This is functionally equivalent to a hard reset and results in
the interface being reset and communications reinitialized. While this field is
1h, COMRESET is transmitted on the interface. Software should leave the
DET field set to 1h for a minimum of 1 millisecond to ensure that a
COMRESET is sent on the interface.

 4h Disable the Serial ATA interface and put Phy in offline mode.

All other values reserved

This field may only be modified when PxCMD.ST is ‘0’. Changing this field while the
PxCMD.ST bit is set to ‘1’ results in undefined behavior. When PxCMD.ST is set to ‘1’,
this field should have a value of 0h.

Note: It is permissible to implement any of the Serial ATA defined behaviors for
transmission of COMRESET when DET=1h.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

31

3.3.12 Offset 30h: PxSERR – Port x Serial ATA Error (SCR1: SError)

Bit Type Reset Description

31:16 RWC 0000h

Diagnostics (DIAG) - Contains diagnostic error information for use by diagnostic

software in validating correct operation or isolating failure modes:

31:27 Reserved

26

Exchanged (X): When set to one this bit indicates that a change in

device presence has been detected since the last time this bit was
cleared. The means by which the implementation determines that the
device presence has changed is vendor specific. This bit shall always be
set to one anytime a COMINIT signal is received. This bit is reflected in
the PxIS.PCS bit.

25

Unknown FIS Type (F): Indicates that one or more FISs were received

by the Transport layer with good CRC, but had a type field that was not
recognized/known.

24

Transport state transition error (T): Indicates that an error has

occurred in the transition from one state to another within the Transport
layer since the last time this bit was cleared.

23

Link Sequence Error (S): Indicates that one or more Link state machine

error conditions was encountered. The Link Layer state machine defines
the conditions under which the link layer detects an erroneous transition.

22

Handshake Error (H): Indicates that one or more R_ERR handshake

response was received in response to frame transmission. Such errors
may be the result of a CRC error detected by the recipient, a disparity or
8b/10b decoding error, or other error condition leading to a negative
handshake on a transmitted frame.

21
CRC Error (C): Indicates that one or more CRC errors occurred with the

Link Layer.

20 Disparity Error (D): This field is not used by AHCI.

19
10B to 8B Decode Error (B): Indicates that one or more 10B to 8B

decoding errors occurred.

18
Comm Wake (W): Indicates that a Comm Wake signal was detected by

the Phy.

17
Phy Internal Error (I): Indicates that the Phy detected some internal

error.

16
PhyRdy Change (N): Indicates that the PhyRdy signal changed state.

This bit is reflected in the PxIS.PRCS bit.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 32

Bit Type Reset Description

15:00 RWC 0000h

Error (ERR): The ERR field contains error information for use by host software in

determining the appropriate response to the error condition.

15:12 Reserved

11

Internal Error (E): The host bus adapter experienced an internal error

that caused the operation to fail and may have put the host bus adapter
into an error state. The internal error may include a master or target
abort when attempting to access system memory, an elasticity buffer
overflow, a primitive mis-alignment, a synchronization FIFO overflow,
and other internal error conditions. Typically when an internal error
occurs, a non-fatal or fatal status bit in the PxIS register will also be set
to give software guidance on the recovery mechanism required.

10 Protocol Error (P): A violation of the Serial ATA protocol was detected.

9

Persistent Communication or Data Integrity Error (C): A

communication error that was not recovered occurred that is expected to
be persistent. Persistent communications errors may arise from faulty
interconnect with the device, from a device that has been removed or
has failed, or a number of other causes.

8
Transient Data Integrity Error (T): A data integrity error occurred that

was not recovered by the interface.

7:2 Reserved

1

Recovered Communications Error (M): Communications between the

device and host was temporarily lost but was re-established. This can
arise from a device temporarily being removed, from a temporary loss of
Phy synchronization, or from other causes and may be derived from the
PhyNRdy signal between the Phy and Link layers.

0

Recovered Data Integrity Error (I): A data integrity error occurred that

was recovered by the interface through a retry operation or other
recovery action.

3.3.13 Offset 34h: PxSACT – Port x Serial ATA Active (SCR3: SActive)

Bit Type Reset Description

31:0 RW1 0

Device Status (DS): This field is bit significant. Each bit corresponds to the TAG and

command slot of a native queued command, where bit 0 corresponds to TAG 0 and
command slot 0. This field is set by software prior to issuing a native queued command
for a particular command slot. Prior to writing PxCI[TAG] to ‘1’, software will set
DS[TAG] to ‘1’ to indicate that a command with that TAG is outstanding. The device
clears bits in this field by sending a Set Device Bits FIS to the host. The HBA clears
bits in this field that are set to ‘1’ in the SActive field of the Set Device Bits FIS. The
HBA only clears bits that correspond to native queued commands that have completed
successfully.

Software should only write this field when PxCMD.ST is set to ‘1’. This field is cleared
when PxCMD.ST is written from a ‘1’ to a ‘0’ by software. This field is not cleared by a
COMRESET or a software reset.

3.3.14 Offset 38h: PxCI – Port x Command Issue

Bit Type Reset Description

31:0 RW1 0

Commands Issued (CI): This field is bit significant. Each bit corresponds to a

command slot, where bit 0 corresponds to command slot 0. This field is set by software
to indicate to the HBA that a command has been built in system memory for a
command slot and may be sent to the device. When the HBA receives a FIS which
clears the BSY, DRQ, and ERR bits for the command, it clears the corresponding bit in
this register for that command slot. Bits in this field shall only be set to ‘1’ by software
when PxCMD.ST is set to ‘1’.

This field is also cleared when PxCMD.ST is written from a ‘1’ to a ‘0’ by software.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

33

3.3.15 Offset 3Ch: PxSNTF – Port x Serial ATA Notification (SCR4: SNotification)

This register is used to determine if asynchronous notification events have occurred for directly connected
devices and devices connected to a Port Multiplier.

Bit Type Reset Description

31:16 RO 0h Reserved

15:0 RWC 0h

PM Notify (PMN): This field indicates whether a particular device with the corresponding

PM Port number issued a Set Device Bits FIS to the host with the Notification bit set.

PM Port 0h sets bit 0
…
PM Port Fh sets bit 15

Individual bits are cleared by software writing 1’s to the corresponding bit positions.

This field is reset to default on a HBA Reset, but it is not reset by COMRESET or
software reset.

3.3.16 Offset 40h: PxFBS: Port x FIS-based Switching Control

This register is used to control and obtain status for Port Multiplier FIS-based switching.

Bit Type Reset Description

31:20 RO 0h Reserved

19:16 RO 0h

Device With Error (DWE): Set by hardware to the value of the Port Multiplier port

number of the device that experienced a fatal error condition. This field is only valid
when PxFBS.SDE = ‘1’.

15:12 RO
Impl
Spec

Active Device Optimization (ADO): This register exposes the number of active

devices that the FIS-based switching implementation has been optimized for. When
there are more devices active than indicated in this field, throughput of concurrent
traffic may degrade. For optimal performance, software should limit the number of
active devices based on this value. The minimum value for this field shall be 2h,
indicating that at least two devices may be active with high performance maintained.

11:8 RW 0h

Device To Issue (DEV): Set by software to the Port Multiplier port value of the next

command to issue. This field enables hardware to know the port the command is to be
issued to without fetching the command header. Software shall not issue commands to
multiple Port Multiplier ports on the same write of the PxCI register.

7:3 RO 0h Reserved

2 RO 0

Single Device Error (SDE): When set to ‘1’ and a fatal error condition has occurred,

hardware believes the error is localized to one device such that software’s first error
recovery step should be to utilize the PxFBS.DEC functionality. When cleared to ‘0’
and a fatal error condition has occurred, the error applies to the entire port and to clear
the error PxCMD.ST shall be cleared to ‘0’ by software. This bit is cleared on
PxFBS.DEC being set to ‘1’ or on PxCMD.ST being cleared to ‘0’.

1 RW1 0

Device Error Clear (DEC): When set to ‘1’ by software, the HBA shall clear the device

specific error condition and the HBA shall flush any commands outstanding for the
device that experienced the error, including clearing the PxCI and PxSACT bits for that
device to ‘0’. When hardware has completed error recovery actions, hardware shall
clear the bit to ‘0’. A write of ‘0’ to this bit by software shall have no effect. Software
shall only set this bit to ‘1’ if PxFBS.EN is set to ‘1’ and PxFBS.SDE is set to ‘1’.

0 RW 0

Enable (EN): When set to ‘1’, a Port Multiplier is attached and the HBA shall use FIS-

based switching to communicate with it. When cleared to ‘0’, FIS-based switching is
not being used. Software shall only change the value of the EN bit when PxCMD.ST is
cleared to ‘0’.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 34

3.3.17 Offset 44h: PxDEVSLP – Port x Device Sleep

Bit Type Reset Description

31:29 RO 0 Reserved

28:25 RO HwInit

DITO Multiplier (DM): 0’s based value that specifies the DITO multiplier that the

HBA applies to the specified DITO value, effectively extending the range of DITO
from 1ms to 16368ms. A value of 0h indicates a multiplier of 1. A maximum
multiplier of 16 may be applied. The HBA computes the total idle timeout as a
product of DM and DITO (i.e. DITOactual = DITO * (DM+1)).

24:15
RW/
RO

Impl
Spec

Device Sleep Idle Timeout (DITO): This field specifies the amount of the time (in

approximate 1ms granularity) that the HBA shall wait before driving the DEVSLP
signal. Refer to section 8.5.1.1.1 for details.

Hardware reloads its port specific Device Sleep timer with this value each time the
port transitions out of the DEVSLP state. For example: from DevSleep to active or
PxDEVSLP.ADSE transitions from ‘0’ to a ‘1’.

If CAP2.SDS is cleared to ‘0’ or CAP2.SADM is cleared to ‘0’ or PxDEVSLP.DSP is
cleared to ‘0’ then these bits are read-only 0h and software shall treat these bits as
reserved.

If CAP2.SDS is set to ‘1’ and CAP2.SADM is set to ‘1’ and PxDEVSLP.DSP is set to
‘1’ then these bits are read-write.

Software shall only set this value when PxCMD.ST is cleared to ‘0’ and
PxDEVSLP.ADSE is cleared to ‘0’.

14:10
RW/
RO

Impl
Spec

Minimum Device Sleep Assertion Time (MDAT): This field specifies the minimum

amount of time (in 1ms granularity) that the HBA must assert the DEVSLP signal
before it may be de-asserted. The nominal value is 10ms and the minimum is 1ms
depending on device identification information.

If CAP2.SDS is cleared to ‘0’ or PxDEVSLP.DSP is cleared to ‘0’ then these bits are
read-only 0h and software shall treat these bits as reserved.

If CAP2.SDS is set to ‘1’ and PxDEVSLP.DSP is set to ‘1’ then these bits are read-
write.

Software shall only set this value when PxCMD.ST is cleared to ‘0’,
PxDEVSLP.ADSE is cleared to ‘0’, and prior to setting PxCMD.ICC to 8h.

09:02
RW/
RO

Impl
Spec

Device Sleep Exit Timeout (DETO): This field specifies the maximum duration (in

approximate 1ms granularity) from DEVSLP de-assertion until the device is ready to
accept OOB. The nominal value is 20ms while the max value is 255ms depending
on device identification information.

If CAP2.SDS is cleared to ‘0’ or PxDEVSLP.DSP is cleared to ‘0’ then these bits are
read-only 0h and software shall treat these bits as reserved.

If CAP2.SDS is set to ‘1’ and PxDEVSLP.DSP is set to ‘1’ then these bits are read-
write.

Software shall only set this value when PxCMD.ST is cleared to ‘0’,
PxDEVSLP.ADSE is cleared to ‘0’, and prior to setting PxCMD.ICC to 8h.

1 RO
Impl
Spec

Device Sleep Present (DSP): If set to ‘1’, the platform supports Device Sleep on this

port. If cleared to ‘0’, the platform does not support Device Sleep on this port. This bit
may only be set to ‘1’ if CAP2.SDS is set to ‘1’.
DSP is mutually exclusive with the PxCMD.HPCP bit and PxCMD.ESP bit.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

35

0
RW/
RO

Impl
Spec

Aggressive Device Sleep Enable (ADSE): When this bit is set to ‘1’, the HBA shall

assert the DEVSLP signal after the port has been idle (PxCI = 0h and PxSACT = 0h)
for the amount of time specified by the PxDEVSLP.DITO register. When this bit is
set to ‘1’ and CAP2.DESO is set to ‘1’, the HBA shall assert the DEVSLP signal after
the port has been idle (PxCI = 0h and PxSACT = 0h) for the amount of time specified
by PxDEVSLP.DITO and the interface is in Slumber (PxSSTS.IPM = 6h).When this
bit is cleared to ‘0’, the HBA does not enter DevSleep unless software directed via
PxCMD.ICC. This bit shall only be set to ‘1’ if PxDEVSLP.DSP is set to ‘1’.

If CAP2.SDS is cleared to ‘0’ or CAP2.SADM is cleared to ‘0’ or if PxDEVSLP.DSP is
cleared to ‘0’, then these bits are read-only 0h and software shall treat these bits as
reserved.

If CAP2.SDS is set to ‘1’ and CAP2.SADM is set to ‘1’ and if PxDEVSLP.DSP is set
to ‘1’, then these bits are read-write.

3.3.18 Offset 70h to 7Fh: PxVS – Vendor Specific

The registers at offset 70h to 7Fh are vendor specific.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 36

4 System Memory Structures

4.1 HBA Memory Space Usage

Most communication between software and an SATA device is through the HBA via system memory
descriptors, which indicates the status of all received and sent FISes, as well as pointers for data
transfers. Some additional communication is done via registers in the HBA, for each port and for global
control.

A visual breakdown of the HBA memory space is shown in Figure 4.

Figure 4: HBA Memory Space Usage

ABAR

Received

FIS

Structure

(Port 0)

Port 0

Port 1

Port 31

Command

List

(Port 0)

Memory

Registers

...Ports 1 - 31 optional

100h

Reserved

Generic Host

Control

00h

2Ch

Received

FIS

Structure

(Port 1)

Command

List

(Port 1)

Received

FIS

Structure

(Port 31)

Command

List

(Port 31)

System MemoryHBA Registers

Config

Registers

Vendor

Specific

A0h

180h

1100h

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

37

4.2 Port Memory Usage

There are two descriptors per port that are used to convey information. One is the FIS descriptor, which
contains FISes received from a device, and the other is the Command List, which contains a list of 1 to 32
commands available for a port to execute.

The base for each pointer is a 64-bit value (32-bits for HBAs that do not support 64-bit addressing). An
overview of the overall structure shown in Figure 5, and the following sections describe each area.

Figure 5: Port System Memory Structures

PxCLB

Received

FIS

Structure

(4.2.1)

Command 0

Command 1

Command 2

Command 31

Command

Table

(4.2.3)

Command

Table

Command

Table

Command

Table

PxFB

Command List

Structure

(4.2.2)

PxCLBU
PxFBU

Optional 64-bit

extension

Port Registers
...

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 38

4.2.1 Received FIS Structure

The HBA uses an area of system memory to communicate information on received FISes. This structure
is pointed to by PxFBU and PxFB. The structure is shown in Figure 6.

Figure 6: Received FIS Organization

Reserved

DSFIS:

DMA Setup FIS

00h

20h

FFh

34h

1Ch

PSFIS:

PIO Setup FIS

40h

RFIS:

D2H Register FIS

60h

54h

UFIS:

Unknown FIS

(up to 64 bytes)

A0h

SDBFIS: Set Device Bits FIS 58h

When a DMA setup FIS arrives from the device, the HBA copies it to the DSFIS area of this structure.

When a PIO setup FIS arrives from the device, the HBA copies it to the PSFIS area of this structure.

When a D2H Register FIS arrives from the device, the HBA copies it to the RFIS area of this structure.

When a Set Device Bits FIS arrives from the device, the HBA copies it to the SDBFIS area of this
structure.

When an unknown FIS arrives from the device, the HBA copies it to the UFIS area in this structure, and
sets PxSERR.DIAG.F, which is reflected in PxIS.UFS when the FIS is posted to memory. A maximum of
64-bytes of an unknown FIS type may be sent to an HBA. If an unknown FIS arrives that is longer than
64-bytes, the FIS is considered illegal and is handled as described in section 6.1.2. While the length of
the FIS is unknown to the HBA, it is expected to be known by system software, and therefore only the
valid bytes shall be processed by software. The HBA is not required to tolerate receiving an unknown FIS
when the HBA is expecting a Data FIS from the device or when the HBA is about to transfer a Data FIS to
the device based on the command protocol being used.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

39

The HBA shall take the actions described in 5.3 when a FIS is received, which includes updating the
Received FIS structure as previously outlined, generating interrupts as appropriate, etc.

4.2.2 Command List Structure

Figure 7 shows the command list structure. Each entry contains a command header, which is a 32-byte
structure that details the direction, type, and scatter/gather pointer of the command. Further details of
each field are listed below.

Figure 7: Command List Structure

...

Command

Header 0

00h

Command

Header 1

Command

Header 2

Command

Header 31

Command

Header 30

PRDTL

CTBA0: Command Table Base Address

1531 023 7

PRDBC: PRD Byte Count

CTBA_U0: Command Table Base Adr Upper 32-bits

R

Each command header has the

same format as command header 0

CFLPMP

Reserved

WARB PCDW0

DW3

DW2

DW1

DW4

DW5 Reserved

DW6 Reserved

DW7 Reserved

20h

40h

60h

3C0h

3E0h

400h

Reserved

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 40

The fields inside the command header are:

Figure 8: DW 0 – Description Information
Bit Description

31:16

Physical Region Descriptor Table Length (PRDTL): Length of the scatter/gather descriptor

table in entries, called the Physical Region Descriptor Table. Each entry is 4 DW. A ‘0’
represents 0 entries, FFFFh represents 65,535 entries. The HBA uses this field to know when to
stop fetching PRDs. If this field is ‘0’, then no data transfer shall occur with the command.

15:12

Port Multiplier Port (PMP): Indicates the port number that should be used when constructing

Data FISes on transmit, and to check against all FISes received for this command. This value
shall be set to 0h by software when it has been determined that it is communicating to a directly
attached device.

11 Reserved

10

Clear Busy upon R_OK (C): When set, the HBA shall clear PxTFD.STS.BSY and

PxCI.CI(pIssueSlot) after transmitting this FIS and receiving R_OK. When cleared, the HBA
shall not clear PxTFD.STS.BSY nor PxCI.CI(pIssueSlot) after transmitting this FIS and receiving
R_OK.

09

BIST (B): When ‘1’, indicates that the command that software built is for sending a BIST FIS.

The HBA shall send the FIS and enter a test mode. The tests that can be run in this mode are
outside the scope of this specification.

08

Reset (R): When ‘1’, indicates that the command that software built is for a part of a software

reset sequence that manipulates the SRST bit in the Device Control register. The HBA must
perform a SYNC escape (if necessary) to get the device into an idle state before sending the
command. See section 10.4 for details on reset.

07

Prefetchable (P): This bit is only valid if the PRDTL field is non-zero or the ATAPI ‘A’ bit is set

in the command header. When set and PRDTL is non-zero, the HBA may prefetch PRDs in
anticipation of performing a data transfer. When set and the ATAPI ‘A’ bit is set in the command
header, the HBA may prefetch the ATAPI command. System software shall not set this bit when
using native command queuing commands or when using FIS-based switching with a Port
Multiplier.

Note: The HBA may prefetch the ATAPI command, PRD entries, and data regardless of the

state of this bit. However, it is recommended that the HBA use this information from software to
avoid prefetching needlessly.

06

Write (W): When set, indicates that the direction is a device write (data from system memory to

device). When cleared, indicates that the direction is a device read (data from device to system
memory). If this bit is set and the P bit is set, the HBA may prefetch data in anticipation of
receiving a DMA Setup FIS, a DMA Activate FIS, or PIO Setup FIS, in addition to prefetching
PRDs.

05

ATAPI (A): When ‘1’, indicates that a PIO setup FIS shall be sent by the device indicating a

transfer for the ATAPI command. The HBA may prefetch data from CTBAz[ACMD] in
anticipation of receiving the PIO Setup FIS.

04:00

Command FIS Length (CFL): Length of the Command FIS. A ‘0’ represents 0 DW, ‘4’

represents 4 DW. A length of ‘0’ or ‘1’ is illegal. The maximum value allowed is 10h, or 16 DW.
The HBA uses this field to know the length of the FIS it shall send to the device.

Figure 9: DW 1 - Command Status
Bit Description

31:00

Physical Region Descriptor Byte Count (PRDBC): Indicates the current byte count that has

transferred on device writes (system memory to device) or device reads (device to system
memory).

For rules on when this field is updated, refer to section 5.4.1

Figure 10: DW 2 – Command Table Base Address
Bit Description

31:07

Command Table Descriptor Base Address (CTBA): Indicates the 32-bit physical address of

the command table, which contains the command FIS, ATAPI Command, and PRD table. This
address must be aligned to a 128-byte cache line, indicated by bits 06:00 being reserved.

06:00 Reserved

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

41

Figure 11: DW 3 – Command Table Base Address Upper
Bit Description

31:00

Command Table Descriptor Base Address Upper 32-bits (CTBAU): This is the upper 32-bits

of the Command Table Base. It is only valid if the HBA indicated that it can support 64-bit
addressing through the S64A bit in the capabilities register, and is ignored otherwise.

Figure 12: DW 4-7 – Reserved
Dword Description

4 Reserved

5 Reserved

6 Reserved

7 Reserved

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 42

4.2.3 Command Table

Each entry in the command list points to a structure called the command table.

Figure 13: Command Table

CFIS:

Command FIS

(up to 64 bytes)

ACMD:

ATAPI Command

(12 or 16 bytes)

(up to 65,535 entries)

PRDT:

Physical Region

Descriptor Table

Item 0

Item CHz[PRDTL]-1

Item 1

00h

50h

40h

1531 023 7

DBC: Byte Count

DBA: Data Base Address

ReservedI

Reserved

DBAU: Data Base Addr Upper 32-bits

1

0

DBC: Byte Count

DBA: Data Base Address

ReservedI

Reserved

DBAU: Data Base Addr Upper 32-bits

1

0

DBC: Byte Count

DBA: Data Base Address

ReservedI

Reserved

DBAU: Data Base Addr Upper 32-bits

1

0

Reserved

80h

DW0

DW3

DW2

DW1

Each command contains several fields. The fields break down as follows:

4.2.3.1 Command FIS (CFIS)

This is a software constructed FIS. For data transfer operations, this is the H2D Register FIS format as
specified in the Serial ATA Revision 2.6 specification. The HBA sets PxTFD.STS.BSY, and then sends
this structure to the attached port. If a Port Multiplier is attached, this field must have the Port Multiplier
port number in the FIS itself – it shall not be added by the HBA. Valid CFIS lengths are 2 to 16 Dwords
and must be in Dword granularity.

4.2.3.2 ATAPI Command (ACMD)

This is a software constructed region of 12 or 16 bytes in length that contains the ATAPI command to
transmit if the “A” bit is set in the command header. The ATAPI command must be either 12 or 16 bytes
in length. The length transmitted by the HBA is determined by the PIO setup FIS that is sent by the
device requesting the ATAPI command.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

43

4.2.3.3 Physical Region Descriptor Table (PRDT)

This table contains the scatter / gather list for the data transfer. It contains a list of 0 (no data to transfer)
to up to 65,535 entries. A breakdown of each field in a PRD table is shown below. Item 0 refers to the
first entry in the PRD table. Item “CH[PRDTL] – 1” refers to the last entry in the table, where the length
field comes from the PRDTL field in the command list entry for this command slot.

Figure 14: DW 0 – Data Base Address
Bit Description

31:01
Data Base Address (DBA): Indicates the 32-bit physical address of the data block. The block

must be word aligned, indicated by bit 0 being reserved.

00 Reserved

Figure 15: DW 1 – Data Base Address Upper
Bit Description

31:00

Data Base Address Upper 32-bits (DBAU): This is the upper 32-bits of the data block physical

address. It is only valid if the HBA indicated that it can support 64-bit addressing through the
S64A bit in the capabilities register, and is ignored otherwise.

Figure 16: DW 2 – Reserved
Bit Description

31:00 Reserved

Figure 17: DW 3 – Description Information
Bit Description

31

Interrupt on Completion (I): When set, indicates that hardware should assert an interrupt when

the data block for this entry has transferred, which means that no data is in the HBA hardware.
Data may still be in flight to system memory (disk reads), or at the device (an R_OK or R_ERR
has yet to be received). The HBA shall set the PxIS.DPS bit after completing the data transfer,
and if enabled, generate an interrupt.

30:22 Reserved

21:00

Data Byte Count (DBC): A ‘0’ based value that Indicates the length, in bytes, of the data block.

A maximum of length of 4MB may exist for any entry. Bit ‘0’ of this field must always be ‘1’ to
indicate an even byte count. A value of ‘1’ indicates 2 bytes, ‘3’ indicates 4 bytes, etc.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 44

5 Data Transfer Operation

5.1 Introduction

The data structures of AHCI are built assuming that each port in an HBA contains its own DMA engine,
that is, each port can be executed independently of any other port. This is a natural flow for software,
since each device is generally treated as a separate execution thread. It is strongly recommended that
HBA implementations proceed in this fashion.

Software presents a list of commands to the HBA for a port, which then processes them. For HBAs that
have a command list depth of ‘1’, this is a single step operation, and software only presents a single
command. For HBAs that support a command list, multiple commands may be posted.

Software posts new commands received by the OS to empty slots in the list, and sets the corresponding
slot bit in the PxCI register. The HBA continuously looks at PxCI to determine if there are commands to
transmit to the device.

The HBA processes the command list in a linear fashion, as described by the HBA state machine below.

5.2 HBA Controller State Machine (Normative)

The state machine arcs are in priority order and are not required to be mutually exclusive. For example, if
both the first arc and second arc of a state are true, the first arc is always taken. Subsequent arcs are not
evaluated until the previous arc is determined to be false.

Implementation Note: HBA state variables are used to describe the required externally visible behavior.
Implementations are not required to have internal state values that directly correspond to these variables.

5.2.1 Variables

hCccTimer This variable is used when command completion coalescing is supported by the HBA.
hCccTimer is decremented by 1h every 1 millisecond. Refer to section 11.

hCccComplete This variable is incremented when a command completion occurs on a port selected for
command completion coalescing. Refer to section 11.

5.2.2 HBA Idle States

5.2.2.1 H:Init

H:Init The HBA performs the following actions:
1. Resets all HBA state machine variables to their reset values, as specified in

section 5.2.1.
2. Resets GHC.AE, GHC.IE, and the IS register to their reset values.
3. Clears GHC.HR to ‘0’ after reset is completed.

 1. GHC.HR is set to ‘1’  H:Init

 2. Else  H:WaitForAhciEnable

 NOTE:
This state is entered asynchronously when GHC.HR is set to ‘1’ from a previous value of ‘0’ and at power-
up.

The H:Init state is entered to reset and initialize the entire controller. This state is only entered when the
HBA powers up or an entire HBA reset is performed.

Note: GHC.HR shall only be set to ‘1’ by software when GHC.AE is set to ‘1’. The result of an HBA reset
is to clear GHC.AE to ‘0’ in AHCI implementations where CAP.SAM = ‘0’. After performing an HBA reset,
GHC.AE should be set to ‘1’ by software before issuing any commands via AHCI mechanisms if
CAP.SAM = ‘0’.

5.2.2.2 H:WaitForAhciEnable

H:WaitForAhciEnable Wait for GHC.AE to be set to ‘1’.

 1. GHC.AE is set to ‘1’  H:Idle

 2. Else  H:WaitForAhciEnable

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

45

The H:WaitForAhciEnable state is entered after a reset. Until GHC.AE is set to ‘1’, any commands
attempted to be issued via AHCI mechanisms will have indeterminate results.

5.2.2.3 H:Idle

H:Idle

 1. GHC.AE is cleared to ‘0’  H:WaitForAhciEnable

 2. CCC_CTL.EN transitioned from ‘0’ to ‘1’  Ccc:Enable

 3. CCC_CTL.EN = ‘1’ and 1 millisecond has expired since last
decrement of hCccTimer and (commands are outstanding on
ports with CCC_PORTS.x = ‘1’)

 Ccc:TimerDecrement

 4. CCC_CTL.EN = ‘1’ and hCccComplete >= CCC_CTL.CC and
CCC_CTL.CC != 0h

 Ccc:SetIS

 5. CCC_CTL.EN = ‘1’ and hCccComplete > 0 and (no commands
outstanding on ports with CCC_PORTS.x = ‘1’) and
CCC_CTL.CC != 0h

 Ccc:SetIS

 6. EM_CTL.CTL.RST written to ‘1’ by software  EM:Reset

 7. Enclosure management message received  EM:MsgRecv

 8. EM_CTL.CTL.TM written to ‘1’ by software  EM:MsgXmit

 9. Else  H:Idle

The H:Idle state is entered when in normal operation and determines the next operation to perform at a
global HBA level.

5.2.2.4 Ccc:Enable

Ccc:Enable The HBA performs the following actions:
1. Sets hCccTimer to CCC_CTL.TV
2. Sets hCccComplete to 0h

 1. Unconditional  H:Idle

This state is entered when the command completion coalescing feature is enabled. This state initializes
the internal variables associated with the command completion coalescing feature.

5.2.2.5 Ccc:TimerDecrement

Ccc:TimerDecrement Decrement hCccTimer by 1.

 1. hCccTimer > 0  H:Idle

 2. Else  Ccc:SetIS

This state is entered to decrement the timer associated with command completion coalescing after 1
millisecond has elapsed since the last time it was decremented.

5.2.2.6 Ccc:SetIS

Ccc:SetIS The HBA performs the following actions:

1. Clears hCccComplete to 0h.
1

2. Sets hCccTimer to CCC_CTL.TV.
3. Sets IS.IPS[CCC_CTL.INT] to ‘1’.

 1. GHC.IE bit set  Ccc:GenIntr

 2. Else  H:Idle

 NOTE:
1. If increments of hCccComplete are targeted for the same cycle as the clearing of hCccComplete to

0h, the final value shall be 0h. The additional completions are aggregated into the CCC interrupt that
will be signaled imminently.

This state is entered to set status bits in the global interrupt status register. Prior to entering this state, the
HBA has set the appropriate PxIS bit based on the interrupt cause.

5.2.2.7 Ccc:GenIntr

Ccc:GenIntr HBA generates an interrupt.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 46

 1. Unconditional  H:Idle

 NOTE:
The interrupt shall remain set until software completes the appropriate actions to clear it as outlined in
section 10.7.

The Ccc:GenIntr state is entered to generate an interrupt when an interrupt for the command completion
coalescing feature should be signaled. See section 10.7 for information on how an HBA generates an
interrupt.

5.2.2.8 Em:Reset

Em:Reset Resets all enclosure management logic and the attached enclosure processor (if
applicable). After the reset is complete, the HBA sets EM_CTL.CTL.RST to ‘0’.

 1. Unconditional  H:Idle

 NOTE:
This state is entered asynchronously when software writes a ‘1’ to EM_CTL.CTL.RST

This state is entered when software requests that the enclosure management logic be reset.

5.2.2.9 Em:MsgRecv

Em:MsgRecv Receive entire message into enclosure management message buffer. After
message is received successfully set EM_CTL.STS.MR to ‘1’.

 1. Unconditional  H:Idle

This state is entered when an enclosure management message is being received. This state finishes
reception of the message and indicates it to software.

5.2.2.10 Em:MsgXmit

Em:MsgXmit Transmit message in enclosure management buffer. After message is transmitted
successfully clear EM_CTL.CTL.TM to ‘0’.

 1. Unconditional  H:Idle

This state is entered when an enclosure management message is being transmitted. This state finishes
transmission of the message and indicates it to software.

5.3 HBA Port State Machine (Normative)

The state machine arcs are in priority order and are not required to be mutually exclusive. For example, if
both the first arc and second arc of a state are true, the first arc is always taken. Subsequent arcs are not
evaluated until the previous arc is determined to be false.

Implementation Note: HBA state variables are used to describe the required externally visible behavior.
Implementations are not required to have internal state values that directly correspond to these variables.

5.3.1 Variables

pUpdateSig This variable is set whenever the HBA needs to update the PxSIG register due to a hard or
software reset. It is cleared when the D2H Register FIS which updates the signature is
received. On power-up or reset of the HBA port, pUpdateSig is set to ‘1’.

pBsy[16] The pBsy array contains the value of the BSY bit in the Shadow Status register for each
device. On power-up or reset of the HBA port, the pBsy array is cleared to 0h. In the case
where FIS-based switching is not enabled (PxFBS.EN = ‘0’), only pBsy[0] is valid and is
directly reflected in PxTFD.STS.BSY.

pDevIssue This variable is set to the device to issue the next command to. On power-up or reset of the
HBA port, pDevIssue is cleared to 0h.

pDrq[16] The pDrq array contains the value of the DRQ bit in the Shadow Status register for each
device. On power-up or reset of the HBA port, the pDrq array is cleared to 0h. In the case
where FIS-based switching is not enabled (PxFBS.EN = ‘0’), only pDrq[0] is valid and is
directly reflected in PxTFD.STS.DRQ.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

47

pPmpCur The value of the Port Multiplier Port (PMP) field in the last FIS received. On power-up or
reset of the HBA port, pPmpCur is set to 0h.

pIssueSlot[16] The pIssueSlot variable contains the command slot location of the last command issued to
each of the devices. On power-up or reset of the HBA port, all pIssueSlot variables are set
to 32. When FIS-based switching is not enabled, only the first value in the array is used.

pDataSlot[16] Each pDataSlot element contains the command slot location of the command to transfer data
for the corresponding device. On power-up or reset of the HBA port, all pDataSlot variables
are cleared to 0h. When FIS-based switching is not enabled, only the first value in the array
is used.

pPMP The pPMP variable contains the value in the PMP field of the command table of the last
command FIS transferred to the device. On power-up or reset of the HBA port, pPMP is
cleared to 0h.

pXferAtapi[16] The pXferAtapi variable is set to ‘1’ when a command is issued that had the A bit set for a
particular transfer. The pXferAtapi variable is cleared to ‘0’ when a Data FIS is transferred to
the device that contains the ATAPI command from the command list. On power-up or reset
of the HBA port, pXferAtapi is cleared to ‘0’.

pPioXfer[16] The pPioXfer[x] variable is set to ‘1’ when a PIO Setup FIS is received with a PMP value of x.
This variable is used after a data transfer occurs in order to update the Status register
appropriately. When FIS-based switching is not enabled, only the first value in the array is
used.

pPioESts[16] The pPioESts variable is set to the E_Status field of the PIO Setup FIS to be stored until the
data for the DRQ block is transferred. On power-up or reset of the HBA port, all pPioESts
variables are cleared to ‘0’. When FIS-based switching is not enabled, only the first value in
the array is used.

pPioErr[16] The pPioErr variable is set to the Error field of the PIO Setup FIS to be stored until the data
for the DRQ block is transferred. On power-up or reset of the HBA port, all pPioErr variables
are cleared to ‘0’. When FIS-based switching is not enabled, only the first value in the array
is used.

pPioIbit[16] The pPioIbit variable is set to the I bit of the PIO Setup FIS to be stored until the data for the
DRQ block is transferred. On power-up or reset of the HBA port, all pPioIbit variables are
cleared to ‘0’. When FIS-based switching is not enabled, only the first value in the array is
used.

pDmaXferCnt[16] The pDmaXferCnt variable is set to the DMA transfer count for a particular DMA transfer.
The DMA transfer may consist of multiple Data FISes. The pDmaXferCnt variable is
decremented by the size of a Data FIS on each successful reception of a Data FIS. On
power-up or reset of the HBA port, pDmaXferCnt is cleared to 0h. An pDmaXferCnt =
0hsignals that there was no DMA Setup FIS or PIO Setup FIS corresponding to the data
transfer and that the transfer lengths should be constructed based on the PRD table entries
only. When FIS-based switching is not enabled, only the first value in the array is used.

pCmdToIssue This variable is set whenever the currently fetched command still needs to be transmitted to
the device. It is used by the state machine to ensure the command is actually transmitted to
the device, especially after a command transmission failure. On power-up or reset of the
HBA port, pCmdToIssue is cleared to 0h.

pPrdIntr[16] This pPrdIntr[x] variable is set whenever the HBA completes a PRD in either the data
transmission or data reception states for the device with a PMP value of x. It is used to
generate a PRD interrupt at the end of a successful data FIS. On power-up or reset of the
HBA port, pPrdIntr is cleared to 0h. When FIS-based switching is not enabled, only the first
value in the array is used.

pSActive This variable is set to the value of the SActive field in a received Set Device Bits FIS. On
power-up or reset of the HBA port, pSActive is cleared to 0h.

pSlotLoc
This variable is used to track the command slot location the HBA will issue a command from
next if one is available in that slot for issue. On power-up or reset of the HBA port, pSlotLoc
is cleared to 0h.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 48

pDitoTimeout This variable is set when the HBA port specific DITO timer (PxDEVSLP.DITO*
(PxDEVSLP.DM+1)) has reached zero. pDitoTimeout is used by the HBA port to determine if
it’s allowed to assert the DEVSLP signal when it’s idle. This variable is cleared when the
HBA port’s DEVSLP signal is asserted or when the HBA‘s port idle timer is reloaded. On
power-up or reset of the HBA port, pDitotimeout is cleared to 0h.

pMdatTimeout This variable is set when the HBA port specific minimum DEVSLP singal assertion time
(PxDEVSLP.MDAT) has reached zero. pMdatTimeout is used by the HBA port to determine
if it’s allowed to de-assert the DEVSLP signal. This variable is cleared when the HBA port’s
DEVSLP signal is de-asserted or when the HBA‘s MDAT timer is reloaded. On power-up or
reset of the HBA port, pMdatTimeout is cleared to 0h.

5.3.2 Port Idle States

5.3.2.1 P:Reset

P:Reset Wait for controller initialization to complete. Apply reset conditions to all port state
machine variables.

 1. HBA reset complete (HBA not in state H:Init)  P:Init

 2. Else  P:Reset

 NOTE:
This state is entered asynchronously when GHC.HR is set to ‘1’ from a previous value of ‘0’ and at power-
up.

The P:Reset state is entered when the entire controller is undergoing a reset. This state waits for the
global controller state to be initialized before continuing.

5.3.2.2 P:Init

P:Init The HBA performs the following actions:
1. Resets all port state machine variables to their reset values, as specified in

section 5.3.1.
2. Resets all port specific register fields (for all ports) except those fields marked

as HwInit and the PxFB/PxFBU/PxCLB/PxCLBU/PxDEVSLP registers.
3. Clears pBsy[0] to ‘0’ and sets pDrq[0] to ‘1’.
4. Resets PxTFD.STS to 7Fh and sets pUpdateSig to ‘1’.
5. Transmits COMRESET to the device if PxCMD.SUD=’1’.

 1. Unconditional  P:NotRunning

The P:Init state is entered after a controller reset is completed. P:Init initializes all of the state machine
variables and port specific registers. If cold presence detect is supported as specified in PxCMD.CPD,
the power to the port is off by default and remains off until software enables power to the port.

5.3.2.3 P:NotRunning

P:NotRunning HBA sets all pIssueSlot array variables to 32. HBA sets pSlotLoc = CAP.NCS. For
devices, where x is 1 to 15, pBsy[x] and pDrq[x] variables are cleared to 0h.

 1. GHC.AE is cleared to ‘0’  P:NotRunning

 2. PxCMD.POD written to ‘1’ from a ‘0’  P:PowerOn

 3. PxCMD.POD written to ‘0’ from a ‘1’  P:PowerOff

 4. PxSCTL.DET written to ‘4h’ from any other value  P:Offline

 5. PxSCTL.DET written to 1h from any other value and
PxCMD.SUD = ‘1’

 P:StartComm

 6. PxCMD.SUD written to ‘1’ from ‘0’ and PxSCTL.DET = ‘0h’  P:StartComm

 7. PxCMD.SUD written to ‘0’ from ‘1’ and PxSCTL.DET = ‘0h’  P:PhyListening

 8. PxCMD.FRE written to ‘1’ from a ‘0’ and previously processed
Register FIS is in receive FIFO and PxSERR.DIAG.X = ‘0’

 P:RegFisPostToMem

 9. PxCMD.ST = ‘1’ and PxSSTS.IPM = (2h or 6h)  PM:LowPower

 10. PxCMD.ST = ‘1’ and PxSSTS.IPM=8h  PM:DevSleep

 11. PxCMD.ST = ‘1’ and PxFBS.EN = ‘1’, PxTFD.STS.BSY =’0’,
and PxTFD.STS.DRQ = ‘0’

 FB:Idle

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

49

 12. PxCMD.ST = ‘1’, PxTFD.STS.BSY =’0’, and PxTFD.STS.DRQ
= ‘0’

 P:Idle

 13. D2H Register FIS received  NDR:Entry

 14. Else  P:NotRunning

 NOTE:
1. This state is entered asynchronously when GHC.AE is transitions from ‘1’ to ‘0’. Disabling AHCI mode

while commands are outstanding has indeterminate results.

In implementations where CAP.SAM is cleared to ‘0’, software shall set GHC.AE to ‘1’ before accessing
AHCI registers other than the GHC register. If software accesses AHCI registers other than GHC when
GHC.AE is cleared to ‘0’ the results are indeterminate.

The P:NotRunning state is entered when the port specific DMA engines are not running. The DMA
engines may not be running for numerous reasons, including because the PxCMD.ST is cleared to ‘0’ or
the communication link with the device has not been established.

Software is only allowed to program the PxCMD.FRE, PxCMD.POD, PxSCTL.DET, and PxCMD.SUD
register bits when PxCMD.ST is set to ‘0’, If software programs these bits in any other state (when
PxCMD.ST is set to ‘1’), indeterminate results may occur.

5.3.2.4 P:ComInit

P:ComInit HBA sets PxTFD.STS to FFh or 80h. HBA sets pBsy[0] and pDrq[0] to reflect the
PxTFD.STS.BSY and PxTFD.STS.DRQ bits. HBA sets PxSSTS.DET to 1h to
indicate a device is detected but communication is not yet established. HBA sets
PxSERR.DIAG.X to ‘1’.

 1. PxIE.PCE is set to ‘1’  P:ComInitSetIS

 2. Else  P:NotRunning

 NOTE:
1. This state is entered asynchronously when a COMINIT is received from the device.

The P:ComInit state is entered when a COMINIT is received from the device. In this state, the
PxTFD.STS register and PxSSTS.DET fields are updated to indicate that a device is present. The
PxSERR.DIAG.X bit is set to ‘1’ to indicate a COMINIT has been received.

5.3.2.5 P:ComInitSetIS

P:ComInitSetIS HBA sets IS.IPS(x) to ‘1’.

 1. GHC.IE = ‘1’  P:ComInitGenIntr

 2. Else  P:NotRunning

This state is entered when a COMINIT is received and the enable for Port Connect Status change
interrupts is set to ‘1’.

5.3.2.6 P:ComInitGenIntr

P:ComInitGenIntr HBA generates an interrupt.

 1. Unconditional  P:NotRunning

 NOTE:
The interrupt shall remain set until software completes the appropriate actions to clear it as outlined in
section 10.7.

The P:ComInitGenIntr state is entered to generate an interrupt for the port after a COMINIT is received
from the device. See section 10.7 for information on how an HBA generates an interrupt.

5.3.2.7 P:RegFisUpdate

P:RegFisUpdate HBA performs the following actions:
1. HBA updates PxSIG with appropriate fields from D2H Register FIS as outlined

in 3.3.9, and clears pUpdateSig to ‘0’.

 1. PxCMD.FRE = ‘1’  P:RegFisPostToMem

 2. Else  P:NotRunning

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 50

The P:RegFisUpdate state is entered to update the PxSIG registers when a D2H Register FIS is received
while the PxCMD.ST bit is cleared to ‘0’.

5.3.2.8 P:RegFisPostToMem

P:RegFisPostToMem HBA performs the following actions:
1. HBA posts the Register FIS in the receive FIFO to PxFB[RFIS]
2. Updates PxTFD.ERR register with value in the Error field of the Register FIS.
3. Updates PxTFD.STS register with value in the Status field of the Register FIS.
4. Updates pBsy[0] and pDrq[0] to reflect the PxTFD.STS.BSY and

PxTFD.STS.DRQ bits.

 1. Unconditional  P:NotRunning

The P:RegFisPostToMem state is entered to post the initial Register FIS and update the PxTFD register
once PxCMD.FRE is set to ‘1’.

5.3.2.9 P:Offline

P:Offline HBA puts Phy into offline mode and the Phy voltage level is brought to common-
mode. HBA stops the port specific DITO idle timer, clears pDitoTimeout to ‘0’, and
clears pMdatTimeout to ‘0’.

 1. Unconditional  P:NotRunning

The P:Offline state is entered to place the Phy for the port into offline mode. Offline mode is defined in
the Serial ATA Revision 3.1 specification.

5.3.2.10 P:StartBitCleared

P:StartBitCleared HBA clears PxCI to 0h, PxSACT to 0h, PxCMD.CCS to 0h, and PxCMD.CR to ‘0’.
HBA clears pDmaXferCnt to 0h.

 1. DMA engines for the port not idle  P:StartBitCleared

 2. Unconditional  P:NotRunning

 NOTE:
This state is entered asynchronously when software writes the PxCMD.ST bit to a ‘0’ from a previous value
of ‘1’ and the HBA is not in state H:Init.

The P:StartBitCleared state is entered when the PxCMD.ST bit is cleared to ‘0’ from a previous value of
‘1’.

5.3.2.11 P:Idle

P:Idle HBA sets PxCMD.CR to ‘1’.

 1. PxSSTS.DET != 3h  P:NotRunning

 2. PxCI != 0h and pIssueSlot[0] = 32  P:SelectCmd

 3. pCmdToIssue = ‘1’ and CTBA(pIssueSlot[0])[R] is set to ‘1’
and pDmaXferCnt[0] = ‘0’

 CFIS:SyncEscape

 4. Data FIS received  DR:Entry

 5. Non-Data FIS received  NDR:Entry

 6. pCmdToIssue = ‘1’ and pDmaXferCnt[0] = ‘0’  CFIS:Xmit

 7. Link layer has negotiated to low power state based on device
power management request

 PM:LowPower

 8. PxCMD.ICC written  PM:ICC

 9. pDitoTimeout = ‘1’ and CAP2.DESO != ‘1’  PM:DevSleep

 10. Else  P:Idle

The P:Idle state is entered when in normal operation to determine the next thing to do.

5.3.2.12 P:SelectCmd

P:SelectCmd HBA sets pSlotLoc = (pSlotLoc + 1) mod (CAP.NCS + 1) or HBA selects the
command to issue that has had the PxCI bit set to ‘1’ longer than any other
command pending to be issued. HBA sets the variable pSlotLoc to the slot location
of the command selected. HBA sets pDevIssue = 0h. HBA stops the port specific
DITO idle timer, clears pDitoTimeout to ‘0’, and clears and pMdatTimeout to ‘0’.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

51

 1. PxCI.CI(pSlotLoc) = ‘0’  P:SelectCmd

 2. Else (command is selected)  P:FetchCmd

The P:SelectCmd state is entered to select the next command to issue to the device.

Note: The search for a new command to issue is described as an iterative process, where each clock
checks a particular CI value. It is shown this way to explicitly indicate the next command to be sent. An
implementation may optimize the search in a single clock, so long as the correct command is selected.
Additionally, an implementation may force in issue order command fetching to ensure that commands are
issued in the order software set the PxCI register by selecting the PxCI bit that has been set to ‘1’ longer
than any other command to be processed.

5.3.2.13 P:FetchCmd

P:FetchCmd The HBA performs the following actions in the order specified:
1. HBA fetches command header from PxCLB[CH(pSlotLoc)]
2. HBA sets pIssueSlot[0] = pSlotLoc
3. HBA sets PxCMD.CCS = pSlotLoc
4. HBA sets pCmdToIssue = ‘1’
5. HBA may prefetch the command FIS from memory

 1. CTBA(pIssueSlot[0]).A (ATAPI) = ‘1’ and

CTBA(pIssueSlot[0]).P
1

 (Prefetchable) = ‘1’

 CFIS:PrefetchACMD

2. CTBA(pIssueSlot[0]).P

1
 (Prefetchable) = ‘1’  CFIS:PrefetchPRD

 3. Unconditional  P:Idle

 NOTE:
1. The P bit may be ignored by hardware although it is recommended to be observed to avoid

prefetching unnecessary data.
2. An HBA implementation may choose to ignore arcs 1 and 2 if it is not desireable to prefetch after the

command FIS is fetched from memory.

The P:FetchCmd state is entered to fetch the command header for the next command to issue from
memory. Note that when a command is selected to be transferred next, an implementation may choose
to set PxTFD.STS.BSY. The requirement is that PxTFD.STS.BSY must be set before the command is
issued to the device.

5.3.2.14 P:StartComm

P:StartComm
1

The HBA tells link layer to start communication, which involves sending

COMRESET
2

 to device. The HBA resets PxTFD.STS to 7Fh, and sets pUpdateSig

to ‘1’. HBA sets pBsy[0] and pDrq[0] to reflect the PxTFD.STS.BSY and
PxTFD.STS.DRQ bits. HBA stops the port specific DITO idle timer, clears
pDitoTimeout to ‘0’, clears and pMdatTimeout to ‘0’.

 1. PxSCTL.DET = 1h  P:StartComm

 2. Unconditional  P:NotRunning

 NOTE:
1. Hardware polling to determine if a device is present is an implementation specific detail. A polling

strategy is not specified in AHCI.
2. It is permissible to implement any of the Serial ATA defined behaviors for transmission of COMRESET

when DET=1h.

The P:StartComm state is entered to start communication with the device by issuing a COMRESET.

5.3.2.15 P:PowerOn

P:PowerOn The HBA drives the appropriate external pin to a level which enables the FET to
supply power to the device.

 1. Unconditional  P:NotRunning

The P:PowerOn state is used to power on a device port.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 52

5.3.2.16 P:PowerOff

P:PowerOff The HBA drives the appropriate external pin to a level which disables the FET from
supplying power to the device.

 1. Unconditional  P:NotRunning

The P:PowerOff state is used to power off a device port.

5.3.2.17 P:PhyListening
P:PhyListening The HBA sets the Phy into listen mode, as defined in section 10.10.1.

 1. Unconditional  P:NotRunning

This state is entered when PxCMD.SUD is set to ‘0’ from a previous value of ‘1’ and PxSCTL.DET = ‘0’.

5.3.3 FIS-based Switching Specific States

5.3.3.1 FB:Idle

FB:Idle HBA sets PxCMD.CR to ‘1’.

 1. PxSSTS.DET != 3h  P:NotRunning

 2. pCmdToIssue = ‘0’ and there is a device that a command

pending in the command list can be issued to
1

 FB:SelectDevice

 3. Data FIS received  DR:Entry

 4. Non-Data FIS received  NDR:Entry

 5. pCmdToIssue = ‘1’ and pDmaXferCnt[pDevIssue] = ‘0’  CFIS:Xmit

 6. Link layer has negotiated to low power state based on device
power management request

 PM:LowPower

 7. PxCMD.ICC written  PM:ICC

 8. pDitoTimeout = ‘1’ and CAP2.DESO != ‘1’  PM:DevSleep

 9. Else  FB:Idle

 NOTE:
1. The HBA shall only issue a command to a device if the corresponding pDmXferCnt, pBsy, and pDrq

variables are zero.

The FB:Idle state is entered when in FIS-based switching operation to determine the next thing to do.

5.3.3.2 FB:SelectDevice

FB:SelectDevice HBA selects a device, pDevIssue, to issue a command to that has pBsy[pDevIssue]
= ‘0’, pDrq[pDevIssue] = ‘0’ and has a command to be issued in the command list (a
PxCI bit is ‘1’ for this device).

 1. Unconditional  FB:SelectCmd

The FB:SelectDevice state is entered to select the device to issue a command to next. The device
selected shall have BSY and DRQ cleared to zero and a command pending in the list. Devices shall be
selected in a manner such that starvation of any device is avoided. In addition, selection of a command
issued to the control port shall be preferred.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

53

5.3.3.3 FB:SelectCmd

FB:SelectCmd HBA selects the command to issue for device pDevIssue that has the PxCI bit set to
‘1’ longer than any other command pending to be issued to that device. HBA sets
the variable pSlotLoc to the slot location of the command selected. Command
ordering is per requirements in section 9.3.2.

 1. Unconditional  FB:FetchCmd

The FB:SelectCmd state is entered to selected the next command to issue to device pDevIssue. The
command selected shall be the oldest command yet to be issued (i.e. the command that had its PxCI bit
set first). If multiple commands were issued on the same write to PxCI, the HBA may select the
command to issue arbitrarily from amongst those commands when they are the oldest.

5.3.3.4 FB:FetchCmd

FB:FetchCmd The HBA performs the following actions in the order specified:
1. HBA fetches command header from PxCLB[CH(pSlotLoc)]
2. HBA sets pIssueSlot[pDevIssue] to pSlotLoc.
3. HBA sets pCmdToIssue = ‘1’

 1. Unconditional  FB:Idle

The FB:FetchCmd state is entered to fetch the command FIS to transmit next from memory. When using
FIS-based switching, the prefetch bit in the command header shall be zero. Thus, there are no transitions
for prefetching PRDs, data, or the ATAPI command. An implementation may choose to prefetch in a
design specific manner. Note that when a command is selected to be transferred next, an
implementation may choose to set pBsy[pSlotLoc] to ‘1’. The requirement is that pBsy[pSlotLoc] must be
set before the command is issued to the device.

5.3.3.5 FB:SingleDeviceError

FB:SingleDeviceError The HBA performs the following actions in the order specified:
1. Set PxFBS.DWE to the device that had the error.
2. Set PxFBS.SDE to ‘1’.

 1. PxFBS.DEC set to ‘1’ by software  FB:SDE_Cleanup

 2. Else  FB:SingleDeviceError

This state is entered when a single device error is encountered when using FIS-based switching.

5.3.3.6 FB:SDE_Cleanup

FB:SDE_Cleanup The HBA performs the following actions in the order specified:
1. Perform any necessary clean-up for the error condition.
2. All commands associated the device that had the error are flushed, with

corresponding bits cleared in the PxCI and PxSACT registers.
3. Clear pBsy[PxFBS.DWE] to ‘0’.
4. Clear pDrq[PxFBS.DWE] to ‘0’.
5. Clear PxFBS.SDE to ‘0’.
6. Clear PxFBS.DEC to ‘0’.

 1. Unconditional  FB:Idle

This state is entered to clean up the state of the HBA after a single device error with FIS-based switching.
At this point, software has acknowledged the error condition.

5.3.4 Power Management States

These states are entered when the HBA is attempting to enter a low power state when the HBA is at an
idle condition.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 54

5.3.4.1 PM:Aggr

PM:Aggr If PxCI = 0h and PxSACT = 0h and PxDEVSLP.ADSE = ‘1’ and CAP2.SDS = ‘1’ and
CAP2.SADM = ‘1’ and PxDEVSLP.DSP = 1’ and PxSCTL.IPM != ‘4h’ and PxSCTL.IPM != ‘5h’
and PxSCTL.IPM != ‘6h’ and PxSCTL.IPM != ‘7h’, the HBA reloads the port specific DITO idle
timer with the value specified in PxDEVSLP.DITO and starts decrementing the idle timer.
Once started, the DITO idle timer continues to decrement even if the HBA leaves the PM:Aggr
state. The DITO idle timer shall continue to decrement until it reachs zero or until the DITO idle
timer is stopped as a result of a software explicit request similar to one that causes an exit
from DevSleep. When the DITO idle timer changes from a non-zero value to zero, the HBA
sets pDitoTimeout to 1.

 1. PxCI != 0h or PxSACT != 0h and PxFBS.EN = ‘1’  FB:Idle

 2. PxCI != 0h or PxSACT != 0h  P:Idle

 3. PxDEVSLP.ADSE = ‘1’ and CAP2.SDS = ‘1’ and CAP2.SADM
= ‘1’ and PxDEVSLP.DSP = 1’ and PxSCTL.IPM != ‘4h’ and
PxSCTL.IPM != ‘5h’ and PxSCTL.IPM != ‘6h’ and PxSCTL.IPM
!= ‘7h’ and CAP2.DESO = ‘0’ and pDitoTimeout = ‘1’

 PM:DevSleep

 4. PxCMD.ALPE = ‘1’ and PxCMD.ASP = ‘0’ and CAP.PSC = ‘1’
and PxSCTL.IPM != ‘1h’ and PxSCTL.IPM != ‘3h’ and
PxSCTL.IPM != ‘5h’ and PxSCTL.IPM != ‘7h’

 PM:Partial

 5. PxCMD.ALPE = ‘1’ and PxCMD.ASP = ‘1’ and CAP.SSC = ‘1’
and PxSCTL.IPM != ‘2h’ and PxSCTL.IPM != ‘3h’ and
PxSCTL.IPM != ‘6h’ and PxSCTL.IPM != ‘7h’

 PM:Slumber

 6. PxFBS.EN = ‘1’  FB:Idle

 7. Else  P:Idle

In this state, the HBA determines whether it can place the link into a low power state if aggressive power
management is enabled or the HBA determines whether it can assert DEVSLP signaling if aggressive
DEVSLP management is enabled and the DEVSLP timer has expired (PxDEVSLP.DITO). The link can
only be placed into a low power state if both the PxCI and the PxSACT registers are cleared to zero
which indicates there are no commands outstanding.

5.3.4.2 PM:ICC

PM:ICC If the value written by software to PxCMD.ICC was 1h, the HBA stops the port
specific DITO idle timer and clears pDitoTimeout to ‘0’.

 1. Value written by software to PxCMD.ICC was 8h and
CAP2.SDS = ‘1’ and PxDEVSLP.DSP = 1’ and PxSCTL.IPM
!= ‘4h’ and PxSCTL.IPM != ‘5h’ and PxSCTL.IPM != ‘6h’ and
PxSCTL.IPM != ‘7h’ and CAP2.DESO = ‘1’ and PxSSTS.IPM =
‘6h’

 PM:DevSleep

 2. Value written by software to PxCMD.ICC was 8h and
CAP2.SDS = ‘1’ and PxDEVSLP.DSP = 1’ and PxSCTL.IPM
!= ‘4h’ and PxSCTL.IPM != ‘5h’ and PxSCTL.IPM != ‘6h’ and
PxSCTL.IPM != ‘7h’ and CAP2.DESO != ‘1’

 PM:DevSleep

 3. Value written by software to PxCMD.ICC was 6h  PM:Slumber

 4. Value written by software to PxCMD.ICC was 2h  PM:Partial

 5. PxFBS.EN = ‘1’  FB:Idle

 6. Else  P:Idle

The HBA enters this state when PxCMD.ICC is written when the HBA is idle. If software has requested a
Slumber or Partial power management request, the HBA will attempt to bring the link to that power state.

5.3.4.3 PM:Partial

PM:Partial HBA attempts to place the link in the Partial interface power management state

 1. Transition to Partial successful  PM:LowPower

 2. PxFBS.EN = ‘1’  FB:Idle

 3. Else  P:Idle

The HBA is not guaranteed to succeed in placing the link in the Partial interface power management state
due to a number of reasons including the current value of the PxSSTS.IPM field and whether the device
responds with PMNAKP to the request.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

55

5.3.4.4 PM:Slumber

PM:Slumber HBA attempts to place the link in the Slumber interface power management state

 1. Transition to Slumber successful  PM:LowPower

 2. PxFBS.EN = ‘1’  FB:Idle

 3. Else  P:Idle

The HBA is not guaranteed to succeed in placing the link in the Slumber power management state due to
a number of reasons including the current value of the PxSSTS.IPM field and whether the device
responds with PMNAKP to the request.

5.3.4.5 PM:LowPower

PM:LowPower HBA remains in low power state negotiated (Partial or Slumber). If PxCMD.ICC is set
to 1h, the HBA stops the port specific DITO idle timer and clears pDitoTimeout to ‘0’.

 1. COMWAKE received from the device  PM:WakeLink

 2. PxCMD.ICC set to 1h  PM:WakeLink

 3. PxCI written by software  PM:WakeLink

 4. PxDEVSLP.ADSE = ‘1’ and CAP2.SDS = ‘1’ and CAP2.SADM
= ‘1’ and PxDEVSLP.DSP = 1’ and PxSSTS.IPM = ‘6h’ and
PxSCTL.IPM != ‘4h’ and PxSCTL.IPM != ‘5h’ and PxSCTL.IPM
!= ‘6h’ and PxSCTL.IPM != ‘7h’ and pDitoTimeout = ‘1’

 PM:DevSleep

 5. PxCMD.ICC set to 8h and CAP2.SDS = ‘1’ and
PxDEVSLP.DSP = 1’ and and PxSSTS.IPM = ‘6h’ and
PxSCTL.IPM != ‘4h’ and PxSCTL.IPM != ‘5h’ and PxSCTL.IPM
!= ‘6h’ and PxSCTL.IPM != ‘7h’

 PM:DevSleep

 6. PxDEVSLP.ADSE = ‘1’ and CAP2.SDS = ‘1’ and CAP2.SADM
= ‘1’ and PxDEVSLP.DSP = 1’ and PxSSTS.IPM = ‘2h’ and
CAP2.DESO != ‘1’ and PxSCTL.IPM != ‘4h’ and PxSCTL.IPM
!= ‘5h’ and PxSCTL.IPM != ‘6h’ and PxSCTL.IPM != ‘7h’ and
pDitoTimeout = ‘1’

 PM:DevSleep

 7. PxCMD.ICC set to 8h and CAP2.SDS = ‘1’ and
PxDEVSLP.DSP = 1’ and and PxSSTS.IPM = ‘2h’ and
CAP2.DESO != ‘1’ PxSCTL.IPM != ‘4h’ and PxSCTL.IPM !=
‘5h’ and PxSCTL.IPM != ‘6h’ and PxSCTL.IPM != ‘7h’

 PM:DevSleep

 8. PxSCTL.DET set to 1h  P:StartComm

 9. PxSCTL.DET set to 4h  P:Offline

 10. Else  PM:LowPower
1

 NOTE:
1. The HBA may transition to PM:Slumber if Automatic Partial to Slumber Transitions are supported and

enabled (PxCAP2.APST = ‘1’ and PxCMD.APSE = ‘1’). If an Automatic Partial to Slumber Transition
occurs, PxSSTS.IPM shall reflect that the host has entered Slumber (PxSSTS.IPM = ‘6h’).

The HBA may bring the link to the active state based on a device request, an explicit software request
(writing the PxCMD.ICC register to 1h), or to transfer a new command.

5.3.4.6 PM:DevSleep

PM:DevSleep HBA remains in DEVSLP mode. On the initial entrance of this state, the HBA reloads the port
specific MDAT minimum DEVSLP signal assertion timer with the value specified in
PxDEVSLP.MDAT and starts decrementing the timer. When the MDAT minimum DEVSLP
signal assertion timer changes from a non-zero value to zero, the HBA sets pMdatTimeout to
1.

 1. PxCMD.ICC set to 1h or PxCI written by software and

CAP2.DESO = ‘1’ and pMdataTimeout = ‘1’
1

 PM: WakeLink

 2. PxCMD.ICC set to 1h or PxCI written by software and

CAP2.DESO != ‘1’ and pMdataTimeout = ‘1’
1

and interface

was in Partial or Slumber when DEVSLP signal was asserted

 PM: WakeLink

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 56

 3. PxCMD.ICC set to 1h or PxCI written by software and

CAP2.DESO != ‘1’ and pMdataTimeout = ‘1’
1

and interface

was not in Partial or Slumber when DEVSLP signal was
asserted

 P:StartComm

4. PxSCTL.DET set to 1h and pMdataTimeout = ‘1’

1
  P:StartComm

5. PxSCTL.DET set to 4h and pMdataTimeout = ‘1’

1
  P:Offline

 6. Else  PM:DEVSLP

 NOTE:
1. Hardware shall de-assert the DEVSLP signal once it has met the PxDEVSLP.MDAT time and wait

until the interface has reached PHYRDY before attempting to re-assert the DEVSLP signal.

The HBA may bring the link to the active state from DEVSLP based on an explicit software request
(writing the PxCMD.ICC register to 1h) or to transfer a new command. An HBA reset (GHC.HR = ‘1’), a
software initiated COMRESET, or placing the port in offline mode shall cause the HBA to de-assert the
DEVSLP signal.

5.3.4.7 PM:WakeLink

PM:WakeLink HBA resumes to active state on the link

 1. Resume from power management state fails  P:NotRunning

 2. PxFBS.EN = ‘1’  FB:Idle

 3. Else  P:Idle

The HBA resumes from the Partial or Slumber power management mode by following the OOB
sequences described in the Serial ATA Revision 2.6 specification.

5.3.5 Non-Data FIS Receive States

5.3.5.1 NDR:Entry

NDR:Entry Receive up to 64 bytes of FIS into internal FIFO.

 1. Reception error (FIS reception failed)  ERR:Non-fatal

 2. FIS is longer than 64 bytes  ERR:Fatal

 3. PxCMD.PMA = ‘1’  NDR:PmCheck

 4. Else  NDR:Accept

This state is entered when the HBA has received a non-Data FIS.

5.3.5.2 NDR:PmCheck

NDR:PmCheck HBA sets pPmpCur to the PMP field in the non-Data FIS. HBA checks that there is
a command outstanding for the device with a Port Multiplier port number equal to
the pPmpCur.

 1. FIS Type is Set Device Bits and ‘N’ bit is set to ‘1’  NDR:Accept

 2. No command outstanding for device with a Port Multiplier port
equal to the PMP field in the non-Data FIS

 ERR:IPMS

 3. Else  NDR:Accept

This state checks to make sure the Port Multiplier Port field corresponds to a device with commands
outstanding, or is an asynchronous notification to the host.

5.3.5.3 NDR:Accept

NDR:Accept HBA accepts the FIS with a status of R_OK.

 1. FIS type is D2H Register FIS or PIO Setup FIS and
(pBsy[pPmpCur] = ‘0’ and pDrq[pPmpCur] = ‘0’) and
PxFBS.EN = ‘1’

 FB:Idle

 2. FIS type is D2H Register FIS or PIO Setup FIS and
(pBsy[pPmpCur] = ‘0’ and pDrq[pPmpCur] = ‘0’)

 P:Idle

 3. FIS Type is D2H Register and PxCMD.ST=0  P:RegFisUpdate

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

57

 4. PxCMD.FRE=0  P:NotRunning
1

 5. FIS Type is D2H Register  RegFIS:Entry

 6. FIS Type is Set Device Bits and ‘N’ bit is set to ‘1’ and
PxFBS.EN = ‘0’ and PM Port field does not match the port
currently being accessed.

 SDB:Notification

 7. FIS Type is Set Device Bits  SDB:Entry

 8. FIS Type is DMA Activate  DX:Entry

 9. FIS Type is DMA Setup  DmaSet:Entry

 10. FIS Type is BIST Activate and far-end loopback is enabled in
the FIS

 BIST:FarEndLoopback
2

 11. FIS Type is BIST Activate and far-end loopback is not enabled
in the FIS

 BIST:TestOngoing
2

 12. FIS Type is PIO Setup  PIO:Entry

 13. Else (FIS type is unknown)  UFIS:Entry

 NOTE:
1. Software shall set PxCMD.FRE to ‘1’ prior to setting PxCMD.ST to ‘1’. Setting PxCMD.ST to ‘1’ when

PxCMD.FRE is cleared to ‘0’ will cause indeterminate results.
2. Handling of the BIST Activate FIS when using FIS-based switching is vendor specific. It is

recommended that BIST procedures with a connected Port Multiplier be performed with command-
based switching. Note that BIST support is not standardized for Port Multipliers.

In this state, the non-Data FIS received has been verified to be valid. If the FIS is a Register FIS or PIO
Setup FIS and BSY and DRQ are cleared for that device, the HBA accepts the FIS with R_OK but does
not perform any updates based on it; see section 6.1.2. In this condition, the device does not own the
taskfile, and thus the received FIS is ignored.

5.3.6 Command Transfer States

5.3.6.1 CFIS:SyncEscape

CFIS:SyncEscape HBA performs a SYNC escape until the interface is quiescent. HBA sets
pUpdateSig to ‘1’ to flag that the signature needs to be updated.

 1. Unconditional  CFIS:Xmit

This state is entered when a reset FIS has been constructed to send to the device. In this state, the HBA
shall perform a SYNC escape on the interface until the interface is quiescent. Note that this state is never
entered when FIS-based switching is enabled, as the host shall not set the ‘R’ bit in the command table
when using FIS-based switching.

5.3.6.2 CFIS:Xmit

CFIS:Xmit HBA performs the following actions in the order specified:
1. HBA sets PxTFD.STS.BSY to ‘1’
2. HBA sets pBsy[pDevIssue] to ‘1’
3. Sets pDataSlot[pDevIssue] = pIssueSlot[pDevIssue], pPMP =

CTBA(pIssueSlot[pDevIssue])[PMP], pXferAtapi[pDevIssue] =
CTBA(pIssueSlot[pDevIssue])[A], pDmaXferCnt[pDevIssue] = 0

4. Fetches command FIS from CTBA(pIssueSlot[pDevIssue])[CFIS] if not
prefetched.

5. Transmits FIS to device, with a length given by
CTBA(pIssueSlot[pDevIssue])[CFL]

 1. X_RDY/X_RDY collision on interface and PxFBS.EN = ‘1’  FB:Idle

 2. X_RDY/X_RDY collision on interface, delay FIS transfer  P:Idle

 3. SYNC escape received for FIS and PxFBS.EN = ‘1’  ERR:SyncEscapeFbNd

 4. SYNC escape received for FIS  ERR:SyncEscapeRecv

 5. R_OK status received for FIS  CFIS:Success

 6. Else (FIS transfer failed)  ERR:Non-fatal

This state is entered to transmit a command FIS to the device. If an X_RDY/X_RDY collision occurs on
the interface, the HBA will return to idle and attempt the FIS transmission again at a later time. If the FIS

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 58

transmission starts but then fails for some reason, non-fatal error bits will be set in the non-fatal error
state and the HBA will attempt to retransmit the command FIS at a later time.

5.3.6.3 CFIS:Success

CFIS:Success HBA clears pCmdToIssue to ‘0’.

 1. CTBA(pIssueSlot[pDevIssue]).B (BIST) = ‘1’  BIST:TestOngoing

 2. CTBA(pIssueSlot[pDevIssue]).C (Clear BSY upon R_OK) = ‘1’  CFIS:ClearCI

 3. CTBA(pIssueSlot[pDevIssue]).A (ATAPI) = ‘1’ and

CTBA(pIssueSlot[pDevIssue]).P
1

 (Prefetchable) = ‘1’

 CFIS:PrefetchACMD

4. CTBA(pIssueSlot[pDevIssue]).P

1
 (Prefetchable) = ‘1’  CFIS:PrefetchPRD

 5. PxFBS.EN = ‘1’  FB:Idle

 6. Else  P:Idle

 NOTE:
1. The P bit may be ignored by hardware although it is recommended to be observed to avoid

prefetching unnecessary data.
2. An HBA implementation may choose to ignore arcs 3 and 4 if it is not desired to prefetch after the

command FIS is sent or if the prefetch has already been done. Note that P shall not be set by
software when FIS-based switching is enabled.

This state is entered after a command FIS is transferred successfully.

5.3.6.4 CFIS:ClearCI

CFIS:ClearCI HBA clears PxTFD.STS.BSY to ‘0’ and pBsy[pDevIssue] to ‘0’. HBA clears
PxCI.CI(pIssueSlot[pDevIssue]) to ‘0’. HBA sets pIssueSlot[pDevIssue] to 32.

 1. CCC_PORTS.x = ‘1’ and PxSACT.DS(pIssueSlot[pDevIssue])
= ‘0’

 CFIS:Ccc

 2. Unconditional  PM:Aggr

This state is entered when the HBA successfully transmits a command FIS to the device and the Clear
Bsy upon R_OK (C) bit is set in the command header. The PRD byte count is not required to be updated
in this state since no data transfer can take place.

5.3.6.5 CFIS:Ccc

CFIS:Ccc HBA increments hCccComplete by 1.

 1. Unconditional  PM:Aggr

This state increments the hCccComplete variable that tracks the number of commands completed on
ports doing command completion coalescing.

5.3.6.6 CFIS:PrefetchACMD

CFIS:PrefetchACMD HBA may prefetch all or part of the ATAPI command at
CTBA(pDataSlot[pDevIssue])[ACMD] based on implementation specific algorithm
and buffer space.

1. CTBA(pIssueSlot[pDevIssue]).P

1
 (Prefetchable) = ‘1’  CFIS:PrefetchPRD

 2. PxFBS.EN = ‘1’  FB:Idle

 3. Else  P:Idle

 NOTE:
1. The P bit may be ignored by hardware although it is recommended to be observed to avoid

prefetching unnecessary data.

This state is entered after a command FIS has been transferred for an ATAPI command in order to
prefetch the ATAPI command to be sent to the device.

5.3.6.7 CFIS:PrefetchPRD

CFIS:PrefetchPRD HBA prefetches some number of PRDs, based on implementation specific algorithm
and buffer space.

 1. CH(pIssueSlot[pDevIssue]).W (Write) set  CFIS:PrefetchData

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

59

 2. PxFBS.EN = ‘1’  FB:Idle

 3. Else  P:Idle

This state is entered after a command FIS has been transferred and there are PRD entries that can be
prefetched for the command.

5.3.6.8 CFIS:PrefetchData

CFIS:PrefetchData HBA may prefetch some amount of data, based on implementation specific
algorithm and buffer space available.

 1. PxFBS.EN = ‘1’  FB:Idle

 2. Unconditional  P:Idle

This state is entered after a command FIS has been transferred and there is data to be written to the
device that can be prefetched.

5.3.7 ATAPI Command Transfer States

The states in this portion of the state machine are responsible for transmitting the ACMD field to the
device.

5.3.7.1 ATAPI:Entry

ATAPI:Entry The HBA constructs a Data FIS with the minimum of pDmaXferCnt[pPmpCur] bytes
or 16 bytes of data fetched from CTBA(pDataSlot[pPmpCur])[ACMD] as necessary.
The PMP field of the Data FIS is set to the value in
PxCLB[CH(pDataSlot[pPmpCur])][PMP]. HBA transmits the Data FIS to the device.
HBA clears pXferAtapi[pPmpCur] to ‘0’.

 1. Error occurred on transmission  ERR:Fatal

 2. Else (transmission successful, R_OK received)  PIO:Update

This state is entered to transmit the ATAPI command to the device.

5.3.8 D2H Register FIS Receive States

5.3.8.1 RegFIS:Entry

RegFIS:Entry HBA performs the following actions in order:
1. Copies Register FIS to system memory at PxFB[(pPmpCur * 256) + RFIS].
2. Updates PxTFD.ERR register with value in the Error field of the Register FIS
3. Updates PxTFD.STS register with value in the Status field of the Register FIS
4. Sets pBsy[pPmpCur] and pDrq[pPmpCur] according to Status field of the FIS.

 1. PxTFD.STS.ERR = ‘1’  ERR:FatalTaskfile

 2. PxTFD.STS.BSY =’0’ and PxTFD.STS.DRQ =’0’  RegFIS:ClearCI

 3. Else  RegFIS:UpdateSig

This state is entered after a valid D2H Register FIS arrives from the device. The purpose of this state is
to update HBA registers and system memory appropriately based on the D2H Register FIS received.

5.3.8.2 RegFIS:ClearCI

RegFIS:ClearCI PxCLB[CH(pIssueSlot[pPmpCur])][PRDBC] updated to reflect total number of bytes
successfully transferred. HBA clears PxCI.CI(pIssueSlot[pPmpCur]) to ‘0’. HBA
sets pIssueSlot[pPmpCur] to 32.

 1. CCC_PORTS.x = ‘1’ and PxSACT.DS(pIssueSlot) = ‘0’  RegFIS:Ccc

 2. Register FIS I bit set  RegFIS:SetIntr

 3. Else  RegFIS:UpdateSig

This state is entered to clear the command issue bit in the PxCI register corresponding to the last
command issued. In this state the HBA updates the PRD byte count according to rules in section 5.4.1,
clears the appropriate PxCI bit to ‘0’ and sets pIssueSlot to 32.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 60

5.3.8.3 RegFIS:Ccc

RegFIS:Ccc HBA increments hCccComplete by 1.

 1. Register FIS I bit set  RegFIS:SetIntr

 2. Else  RegFIS:UpdateSig

This state increments the hCccComplete variable that tracks the number of commands completed on
ports doing command completion coalescing.

5.3.8.4 RegFIS:SetIntr

RegFIS:SetIntr HBA sets PxIS.DHRS to ‘1’.

 1. PxIE.DHRE = ‘1’  RegFIS:SetIS

 2. Else  RegFIS:UpdateSig

This state is entered when the interrupt ‘I’ bit is set in the D2H Register FIS received.

5.3.8.5 RegFIS:SetIS

RegFIS:SetIS HBA sets IS.IPS(x) to ‘1’.

 1. GHC.IE = ‘1’  RegFIS:GenIntr

 2. Else  RegFIS:UpdateSig

This state is entered when the interrupt ‘I’ bit is set in the D2H Register FIS received and the enable for
D2H Register FIS interrupts is set.

5.3.8.6 RegFIS:GenIntr

RegFIS:GenIntr HBA generates an interrupt.

 1. Unconditional  RegFIS:UpdateSig

 NOTE:
The interrupt shall remain set until software completes the appropriate actions to clear it as outlined in
section 10.7.

The RegFIS:GenIntr state is entered to generate an interrupt for the port after a Register FIS interrupt has
occurred. See section 10.7 for information on how an HBA generates an interrupt.

5.3.8.7 RegFIS:UpdateSig

RegFIS:UpdateSig

 1. pUpdateSig = ‘1’  RegFIS:SetSig

 2. Else  PM:Aggr

The RegFIS:UpdateSig state is entered to check whether the PxSIG register needs to be updated. The
signature is not updated when FIS-based switching is enabled.

5.3.8.8 RegFIS:SetSig

RegFIS:SetSig HBA updates PxSIG with appropriate fields from D2H Register FIS as outlined in
3.3.9, and clears pUpdateSig to ‘0’

 1. Unconditional  PM:Aggr

The RegFIS:SetSig state updates the PxSIG register.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

61

5.3.9 PIO Setup Receive States

5.3.9.1 PIO:Entry

PIO:Entry HBA performs the following actions in order:
1. Copies the PIO Setup FIS to system memory at PxFB[(pPmpCur * 256) +

PSFIS].
2. Sets pPioXfer[pPmpCur] to ‘1’
3. Sets pPioESts[pPmpCur] to E_Status field of the FIS
4. Sets pPioErr[pPmpCur] to Error field of the FIS
5. Sets pPioIbit[pPmpCur] to value of I bit in the FIS
6. Sets pDmaXferCnt[pPmpCur] to Transfer Count field of the FIS
7. Sets PxTFD.STS register to Status field of the FIS
8. Updates PxTFD.STS.ERR with pPioErr[pPmpCur]
9. Sets pBsy[pPmpCur] and pDrq[pPmpCur] according to Status field of the FIS.

 1. PxTFD.STS.ERR = ‘1’  ERR:FatalTaskfile

 2. D bit in the FIS is cleared to ‘0’ and pXferAtapi[pPmpCur] is
cleared to ‘0’ (Data FIS should be transmitted)

 DX:Entry

 3. D bit in the FIS is cleared to ‘0’ and pXferAtapi[pPmpCur] is
set to ‘1’ (ATAPI command should be transmitted)

 ATAPI:Entry

 4. PxFBS.EN = ‘1’ (Data FIS will be received from device)  FB:Idle

 5. Else (Data FIS will be received from device)  P:Idle

This state receives a PIO Setup FIS and updates the appropriate state based on the PIO Setup FIS.

5.3.9.2 PIO:Update

PIO:Update HBA performs the following actions:
1. Updates PxTFD.STS with pPioESts[pPmpCur]
2. Sets pBsy[pPmpCur] and pDrq[pPmpCur] according to pPioESts[pPmpCur].
3. Updates PxTFD.ERR with pPioErr[pPmpCur]
4. Clears pPioXfer[pPmpCur] = ‘0’

 1. PxTFD.STS.ERR = ‘1’  ERR:FatalTaskfile

 2. PxTFD.STS.BSY = ‘0’ and PxTFD.STS.DRQ = ‘0’  PIO:ClearCI

 3. pPioIbit[pPmpCur] = ‘1’  PIO:SetIntr

 4. PxFBS.EN  FB:Idle

 5. Else  P:Idle

This state updates appropriate registers after the PIO transfer has completed.

5.3.9.3 PIO:ClearCI

PIO:ClearCI PxCLB[CH(pIssueSlot[pPmpCur])][PRDBC] updated to reflect total number of bytes
successfully transferred. The HBA clears PxCI.CI(pIssueSlot[pPmpCur]) to ‘0’ and
sets pIssueSlot to 32.

 1. CCC_PORTS.x = ‘1’ and PxSACT.DS(pIssueSlot[pPmpCur]) =
‘0’

 PIO:Ccc

 2. pPioIbit = ‘1’  PIO:SetIntr

 3. Else  PM:Aggr

This state is entered to mark the current command as completed and allow the HBA to fetch a new
command. In this state, the PRD byte count is updated according to the rules in section 5.4.1.

5.3.9.4 PIO:Ccc

PIO:Ccc HBA increments hCccComplete by 1.

 1. pPioIbit[pPmpCur] = ‘1’  PIO:SetIntr

 2. Else  PM:Aggr

This state increments the hCccComplete variable that tracks the number of commands completed on
ports doing command completion coalescing.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 62

5.3.9.5 PIO:SetIntr

PIO:SetIntr Set PxIS.PSS to ‘1’

 1. PxIE.PSE = ‘1’  PIO:SetIS

 2. Else  PM:Aggr

This state is entered when the PIO Setup FIS has the interrupt ‘I’ bit set.

5.3.9.6 PIO:SetIS

DR:PrdSetIS HBA sets IS.IPS(x) to ‘1’.

 1. GHC.IE = ‘1’  PIO:GenIntr

 2. Else  PM:Aggr

This state is entered to set the interrupt for this port on the controller.

5.3.9.7 PIO:GenIntr

PIO:GenIntr HBA generates an interrupt.

 1. Unconditional  PM:Aggr

 NOTE:
The interrupt shall remain set until software completes the appropriate actions to clear it as outlined in
section 10.7.

This state is entered to generate an interrupt for the port. See section 10.7 for information on how an
HBA generates an interrupt.

5.3.10 Data Transmit States

5.3.10.1 DX:Entry

DX:Entry The HBA constructs a Data FIS for command list entry pDataSlot[pPmpCur]. The
PMP field of the Data FIS is set to the value in
PxCLB[CH(pDataSlot[pPmpCur])][PMP]. The HBA fetches PRDs and data from
locations specified in the pDataSlot[pPmpCur] command list entry. The HBA clears
pPrdIntr[pPmpCur] to ‘0’.

 1. No data to transmit and pPioXfer[pPmpCur] = ‘1’  PIO:Update

 2. No data to transmit and pPioXfer[pPmpCur] = ‘0’ and
PxFBS.EN = ‘1’

 FB:Idle

 3. No data to transmit and pPioXfer[pPmpCur] = ‘0’  P:Idle

 4. Else  DX:Transmit

This state starts to construct a Data FIS to transmit to the device. This state is entered after a PIO Setup,
DMA Activate, or DMA Setup FIS is received.

5.3.10.2 DX:Transmit

DX:Transmit HBA transmits the Data FIS to the device. Continue to fetch PRDs and data as
necessary to complete the Data FIS until pDmaXferCnt[pPmpCur] bytes or 8KB has
been transferred. For each PRD entry processed, if R_OK is received for all the
FISes containing the data for that PRD entry and the ‘I’ bit is set in the PRD entry,
then set pPrdIntr[pPmpCur] to ‘1’.

 1. SYNC escape received for Data FIS  ERR:SyncEscapeRecv

 2. R_ERR received for FIS and PxFBS.EN = ‘1’  ERR:Non-fatal

 3. Transmission failed  ERR:Fatal

 4. pDmaXferCnt[pPmpCur] bytes have been transferred, end of
PRD table reached, or maximum Data FIS length of 8KB has
been transferred.

 DX:UpdateByteCount

 NOTE:
1. If the DMAT primitive is received from the device, it is recommended that this primitive be ignored and

data transmission be continued.

This state transmits a Data FIS to the device. The HBA will fetch PRDs and data as necessary to
complete the Data FIS.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

63

5.3.10.3 DX:UpdateByteCount

DX:UpdateByteCount HBA performs the following actions:
1. Optionally increments PxCLB[CH(pDataSlot[pPmpCur])][PRDBC] by size of

Data FIS transferred.
2. Decrements pDmaXferCnt[pPmpCur] by size of Data FIS transferred.

 1. pPrdIntr[pPmpCur] = ‘1’  DX:PrdSetIntr

 2. pPioXfer[pPmpCur] = ‘1’  PIO:Update

 3. PxFBS.EN = ‘1’  FB:Idle

 4. Else  P:Idle

This state updates transfer byte counts based on the Data FIS that was successfully transmitted. Update
of the PRD byte count is optional, refer to section 5.4.1.

5.3.10.4 DX:PrdSetIntr

DX:PrdSetIntr HBA sets PxIS.DPS to ‘1’. HBA clears pPrdIntr[pPmpCur] to ‘0’.

 1. PxIE.DPE = ‘1’  DX:PrdSetIS

 2. pPioXfer[pPmpCur] = ‘1’  PIO:Update

 3. PxFBS.EN = ‘1’  FB:Idle

 4. Else  P:idle

The HBA enters this state when a PRD interrupt needs to be generated.

5.3.10.5 DX:PrdSetIS

DX:PrdSetIS HBA sets IS.IPS(x) to ‘1’.

 1. GHC.IE = ‘1’  DX:PrdGenIntr

 2. pPioXfer[pPmpCur] = ‘1’  PIO:Update

 3. PxFBS.EN = ‘1’  FB:Idle

 4. Else  P:Idle

The HBA enters this state to set an interrupt on the controller for this port.

5.3.10.6 DX:PrdGenIntr

DX:GenIntr HBA generates an interrupt.

 1. pPioXfer[pPmpCur] = ‘1’  PIO:Update

 2. PxFBS.EN = ‘1’  FB:Idle

 3. Else  P:Idle

 NOTE:
The interrupt shall remain set until software completes the appropriate actions to clear it as outlined in
section 10.7.

This state is entered to generate an interrupt. See section 10.7 for information on how an HBA generates
an interrupt

5.3.11 Data Receive States

5.3.11.1 DR:Entry

DR:Entry HBA sets pPmpCur to the PMP field in the Data FIS. HBA clears
pPrdIntr[pPmpCur] to ‘0’.

 1. PMP field in the Data FIS corresponds to a device for which
commands are not outstanding

 ERR:IPMS

 2. Else  DR:Receive

This state is entered when a Data FIS is received. This state checks to make sure the Port Multiplier Port
field is valid.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 64

5.3.11.2 DR:Receive

DR:Receive HBA fetches PRD entries from the command list entry for pDataSlot[pPmpCur] as
necessary and transfers data from FIS to system memory. For each PRD entry
processed, if a valid CRC is received for all the FISes containing the data for that
PRD entry and the ‘I’ bit is set in the PRD entry, then set pPrdIntr[pPmpCur] to ‘1’.

 1. Data FIS reception successful (Link layer returned R_OK to
device) and more data arrived than could fit in PRD table

 ERR:Non-fatal

 2. Data FIS reception successful (Link layer returned R_OK to
device)

 DR:UpdateByteCount

 3. Else (Data FIS reception failed)  ERR:Fatal

This state is entered when a Data FIS is received. The state transfers the data in the FIS to system
memory until there is no data left to transfer or the end of the PRD table is reached.

5.3.11.3 DR:UpdateByteCount

DR:UpdateByteCount HBA accepts FIS with status of R_OK. HBA optionally increments
PxCLB[CH(pDataSlot[pPmpCur])][PRDBC] by number of bytes transferred to
system memory. HBA decrements pDmaXferCnt[pPmpCur] by number of bytes
transferred to system memory.

 1. pPrdIntr[pPmpCur] = ‘1’  DX:PrdSetIntr

 2. pPioXfer[pPmpCur] = ‘1’  PIO:Update

 3. PxFBS.EN = ‘1’  FB:Idle

 4. Else  P:Idle

This state is entered after the appropriate number of bytes in a Data FIS have been transferred to system
memory and the Data FIS CRC has been verified as correct. Update of the PRD byte count is optional,
refer to section 5.4.1.

5.3.12 DMA Setup Receive States

5.3.12.1 DmaSet:Entry

DmaSet:Entry The HBA performs the following actions:
1. HBA stores TAG field from the DMA Setup FIS in pDataSlot[pPmpCur]
2. HBA stores TransferCount field from the DMA Setup FIS in

pDmaXferCnt[pPmpCur]
3. HBA writes the FIS to system memory at PxFB[(pPmpCur * 256) + DSFIS]

 1. I bit in the FIS is set to ‘1’  DmaSet:SetIntr

 2. Else  DmaSet:AutoActivate

This state is entered when a correctly formed DMA Setup FIS is received.

5.3.12.2 DmaSet:SetIntr

DmaSet:SetIntr HBA sets PxIS.DSS to ‘1’.

 1. PxIE.DSE = ‘1’  DmaSet:SetIS

 2. Else  DmaSet:AutoActivate

This state is entered when a DMA Setup FIS is received that has the I bit set.

5.3.12.3 DmaSet:SetIS

DmaSet:SetIntr HBA sets IS.IPS(x) to ‘1’.

 1. GHC.IE = ‘1’  DmaSet:GenIntr

 2. Else  DmaSet:AutoActivate

In this state, the HBA sets the interrupt status bit for this port on the controller.

5.3.12.4 DmaSet:GenIntr

DmaSet:GenIntr HBA generates an interrupt.

 1. Unconditional  DmaSet:AutoActivate

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

65

 NOTE:
The interrupt shall remain set until software completes the appropriate actions to clear it as outlined in
section 10.7.

This state is entered to generate an interrupt. See section 10.7 for information on how an HBA generates
an interrupt

5.3.12.5 DmaSet:AutoActivate

DmaSet:AutoActivate

 1. CH(pDataSlot[pPmpCur]).W is set to ‘1’ and A bit in the FIS is
set to ‘1’

 DX:Entry

 2. PxFBS.EN = ‘1’  FB:Idle

 3. Else  P:Idle

This state is entered to determine whether a Data FIS should immediately be transmitted to the device.

5.3.13 Set Device Bits States

5.3.13.1 SDB:Entry

SDB:Entry HBA performs the following actions:
1. Copies Set Device Bits FIS to system memory at offset PxFB[(pPmpCur * 256)

+ SDFIS]
2. Updates PxTFD.STS with non-reserved bits in Status field of FIS
3. Updates PxTFD.ERR with Error field of FIS
4. Clears bits in PxSACT that have corresponding bits set in the SActive field of

the SDB FIS. Sets pSActive to value of SActive field in received FIS.
5. Clears pDmaXferCnt[pPmpCur] to ‘0’

 1. PxTFD.STS.ERR = ‘1’  ERR:FatalTaskfile

 2. CAP.SSNTF = ‘1’ and (Notification (N) bit and I bit are both set
to ‘1’ in the SDB FIS)

 SDB:Notification

 3. I bit is set in the SDB FIS  SDB:SetIntr

 4. Else  PM:Aggr

This state receives a Set Device Bits FIS and updates the appropriate state based on the Set Device Bits
FIS.

5.3.13.2 SDB:Notification

SDB:Notification HBA sets to ‘1’ the bit corresponding to the Port Multiplier Port number in the
received SDB FIS in PxSNTF.PMN.

 1. Unconditional  SDB:SetIntr

This state updates the PxSNTF register based on the Port Multiplier Port number received in the Set
Device Bits FIS. This state is only entered if the received Set Device Bits FIS has the Notification bit set
and the HBA supports the SNotification register as shown in CAP.SSNTF.

5.3.13.3 SDB:SetIntr

SDB:SetIntr HBA sets PxIS.SDBS to ‘1’.

 1. CCC_PORTS.x = ‘1’ and pSActive != 0h  SDB:Ccc

 2. PxIE.SDBE = ‘1’  SDB:SetIS

 3. pSActive = 0h and PxFBS.EN = ‘1’  FB:Idle

 4. pSActive = 0h  P:Idle

 5. Else  PM:Aggr

This state is entered when a Set Device Bits FIS with the interrupt bit set was received.

5.3.13.4 SDB:Ccc

SDB:Ccc HBA increments hCccComplete by number of bits set to ‘1’ in pSActive.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 66

 1. PxIE.SDBE = ‘1’  SDB:SetIS

 2. Unconditional  PM:Aggr

This state increments the hCccComplete variable that tracks the number of commands completed on
ports doing command completion coalescing.

5.3.13.5 SDB:SetIS

SDB:SetIS HBA sets IS.IPS[x] bit.

 1. GHC.IE bit set  SDB:GenIntr

 2. pSActive = 0h and PxFBS.EN = ‘1’  FB:Idle
1

 3. pSActive = 0h  P:Idle
1

 4. Else  PM:Aggr

 NOTE:
1. This arc ensures that aggressive power management is not entered due to an asynchronous

notification event.

This state is entered to set status bits in the global interrupt status register. Prior to entering this state, the
HBA has set the appropriate PxIS bit based on the interrupt cause.

5.3.13.6 SDB:GenIntr

SDB:GenIntr HBA generates an interrupt.

 1. pSActive = 0h and PxFBS.EN = ‘1’  FB:Idle
2

 2. pSActive = 0h  P:Idle
2

 3. Else  PM:Aggr

 NOTE:
1. The interrupt shall remain set until software completes the appropriate actions to clear it as outlined in

section 10.7.
2. This arc ensures that aggressive power management is not entered due to an asynchronous

notification event.

This state is entered to generate an interrupt for the port. See section 10.7 for information on how an
HBA generates an interrupt.

5.3.14 Unknown FIS Receive States

5.3.14.1 UFIS:Entry

UFIS:Entry HBA performs the following actions in order:
1. Copies the Unknown FIS to system memory at PxFB[UFIS]
2. Sets PxIS.UFS to ‘1’

 1. PxIE.UFE is set to ‘1’  UFIS:SetIS

 2. PxFBS.EN = ‘1’  FB:Idle

 3. Else  P:Idle

This state is entered when an Unknown FIS is received and the CRC for that FIS is correct. When this
state is entered, PxSERR.DIAG.F has already been set to ‘1’. Note that PxSERR.DIAG.F is set to ‘1’ as
soon as the HBA recognizes that an unknown FIS has been received.

5.3.14.2 UFIS:SetIS

UFIS:SetIS HBA sets IS.IPS[x] bit.

 1. GHC.IE bit set  UFIS:GenIntr

 2. PxFBS.EN = ‘1’  FB:Idle

 3. Else  P:Idle

This state is entered to set status bits in the global interrupt status register.

5.3.14.3 UFIS:GenIntr

UFIS:GenIntr HBA generates an interrupt.

 1. PxFBS.EN = ‘1’  FB:Idle

 2. Else  P:Idle

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

67

 NOTE:
The interrupt shall remain set until software completes the appropriate actions to clear it as outlined in
section 10.7.

This state is entered to generate an interrupt for the port. See section 10.7 for information on how an
HBA generates an interrupt.

5.3.15 BIST States

5.3.15.1 BIST:FarEndLoopback

BIST:FarEndLoopback HBA sets PxSSTS.DET to 4h.

 1. Unconditional  BIST:TestOngoing

This state is entered when a BIST Activate FIS with far-end loopback mode enabled is received from the
device.

5.3.15.2 BIST:TestOngoing

BIST:TestOngoing

 1. Unconditional  BIST:TestOngoing

This state is entered when a BIST Activate FIS is sent by the HBA to the device or received from the
device. In this state, testing is performed that is outside the scope of this specification.

Software exits the HBA from this state by clearing PxCMD.ST to ‘0’.

5.3.16 Error States

When an error occurs, the HBA updates status information in the port registers such that the software can
take appropriate recovery actions. Figure 18 lists the HBA behavior for particular conditions. For more
information, refer to section 6. The Error States describe expected HBA behavior following an error
condition. Note that for fatal error conditions, PxCMD.ST shall be cleared to ‘0’ in order to clear the error
condition.

Figure 18: HBA Error Handling Behavior

Condition Normal FIS-based Switching

SYNC Escape by device of D2H FIS  Set PxIS.IFS to ‘1’.

SYNC Escape by device of H2D Data FIS  Set PxIS.IFS to ‘1’.

SYNC Escape by device of H2D non-Data
FIS

 Set PxIS.IFS to ‘1’.  Set PxIS.INFS to ‘1’.

 Update PxFBS.DWE.

 Set PxFBS.SDE to ‘1’.

R_ERR response to H2D Data FIS  Set PxIS.IFS to ‘1’.

 Allow FIS posting prior
to PxCMD.ST cleared
to ‘0’.

 Continue

R_ERR response to H2D non-Data FIS  Set PxINFS to ‘1’.

CRC error on D2H Data FIS  Set PxIS.IFS to ‘1’.

 Allow FIS posting prior to PxCMD.ST cleared to ‘0’.

CRC error on D2H non-Data FIS  Set PxIS.INFS to ‘1’.

Set Device Bits FIS with ERR set to ‘1’ in
Status field

 Update PxSACT.

 Set PxIS.TFES to ‘1’.

 Update PxSACT.

 Set PxIS.TFES to ‘1’.

 Update PxFBS.DWE.

 Set PxFBS.SDE to ‘1’.

D2H Register FIS with ERR set to ‘1’ in
Status field

 Set PxIS.TFES to ‘1’.  Set PxIS.TFES to ‘1’.

 Update PxFBS.DWE.

 Set PxFBS.SDE to ‘1’.

PIO Setup FIS with ERR set to ‘1’ in Status  Set PxIS.TFES to ‘1’.  Set PxIS.TFES to ‘1’.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 68

or E_Status field  Update PxFBS.DWE.

 Set PxFBS.SDE to ‘1’.

DMA Setup FIS received without active
command slot

 Set PxIS.IFS to ‘1’.

D2H FIS other than DMA Setup received
without active command slot

 Drop FIS quietly.

 Do not post the FIS.

 Do not update any registers based on the FIS.

Overflow  Set PxIS.OFS to ‘1’.  Set PxIS.OFS to ‘1’.

 Update PxFBS.DWE.

 Set PxFBS.SDE to ‘1’.

Underflow  Update byte count in command header.

5.3.16.1 ERR:IPMS

ERR:IPMS HBA performs the following actions in the order specified:
1. Sets PxIS.IPMS to ‘1’.

 1. Unconditional  ERR:Non-Fatal

This state is entered when a FIS is received with an invalid Port Multiplier port field. This error is not fatal.

5.3.16.2 ERR:SyncEscapeRecv

ERR:SyncEscapeRecv HBA performs the following actions in the order specified:
1. Clears both PxTFD.STS.BSY and PxTFD.STS.DRQ to ‘0’.
2. Clears pBsy[0] and pDrq[0] to ‘0’.
3. Sets PxIS.IFS to ‘1’.

 1. Unconditional  ERR:Fatal

This state is entered when a SYNC escape is received for an H2D Register FIS or an H2D Data FIS.
When a SYNC escape is received, the HBA shall not retransmit the FIS in accordance with the Serial
ATA Revision 2.6 specification. In order to enable timely recovery without a COMRESET, the
PxTFD.STS.BSY bit is cleared to ‘0’ and PxIS.IFS is set to ‘1’. The HBA shall not clear any of the PxCI
bits to ensure that software can determine the command that failed.

5.3.16.3 ERR:SyncEscapeFbNd

ERR:SyncEscapeFbNd HBA performs the following actions in the order specified:
1. Sets PxIS.INFS to ‘1’.

 1. Unconditional  FB:SingleDeviceError

This state is entered when a SYNC escape is received for an H2D Register FIS and FIS-based switching
is enabled. This condition is treated as a single device error.

5.3.16.4 ERR:Fatal

ERR:Fatal HBA performs the following actions in the order specified:

1. Sets PxIS.IFS to ‘1’.

 1. Unconditional  ERR:WaitForClear

This state is entered when a fatal error has occurred. If FIS-based switching is enabled and this is a
single device error, the HBA proceeds to a FIS-based switching specific state to handle this condition.
For all other cases, the HBA requires that the PxCMD.ST bit be cleared to ‘0’ to continue. If this error
occurred due to a PIO command data transmission failure for which the ‘I’ bit was set to ‘1’ as part of the
PIO Setup FIS, then the PxIS.PSS bit shall be set to ‘1’.

5.3.16.5 ERR:FatalTaskfile

ERR:FatalTaskfile HBA performs the following actions in the order specified:

1. Sets PxIS.TFES to ‘1’.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

69

 1. PxFBS.EN = ‘1’  FB:SingleDeviceError

 2. Else  ERR:WaitForClear

This state is entered when a fatal error has occurred due to the ERR bit being set in the Status register of
the task file. If FIS-based switching is enabled, the HBA proceeds to a FIS-based switching specific state
to handle this condition. For all other cases, the HBA requires that the PxCMD.ST bit be cleared to ‘0’ to
continue.

5.3.16.6 ERR:WaitForClear

This state is entered when the HBA has encountered a condition it cannot recover from. Appropriate
error bits shall be set by the HBA, and interrupts may optionally be generated. See section 6 for fatal
conditions. When a fatal condition occurs, the HBA requires PxCMD.ST to be cleared in order to recover.

The HBA may clear PxCMD.CR to ‘0’ when a fatal error occurs prior to software clearing PxCMD.ST to
‘0’. The HBA is required to clear PxCMD.CR to ‘0’ after PxCMD.ST is cleared to ‘0’.

5.3.16.7 ERR:Non-Fatal

This state is entered when the HBA has encountered an error it can recover from. Appropriate error bits
shall be set by the HBA, and interrupts may optionally be generated. See section 6 for non-fatal
conditions. When a non-fatal condition occurs, the HBA shall return to P:Idle or FB:Idle (if PxFBS.EN =
‘1’) after processing the error.

5.4 HBA Rules (Normative)

5.4.1 PRD Byte Count Updates

Each command has a PRD byte count field that is initialized to ‘0’ by software prior to starting a transfer,
and is updated by hardware as transfers occur. The purpose of this field is to let software know how
many bytes transferred for a given operation in order to determine if underflow occurred. The same
requirements hold for normal operation and when FIS-based switching is enabled for a port.

For non-native queued commands, the PRD byte count field shall contain an accurate count of the
number of bytes transferred for the command before the PxCI bit is cleared to ‘0’ for the command. The
byte count shall only reflect transmitted data that an R_OK has been received for and received data that
has a valid CRC. Hardware may update the byte count after each Data FIS is transferred if desired.

The field should not be used and is not required to be valid when issuing native command queuing
commands; in this case underflow is always illegal.

If an overflow occurs, the byte count is not required to reflect the total number of bytes transferred. The
PxIS.OFS bit should be used to detect overflow.

5.4.1.1 Data FIS Odd Word Transfers

If the final Data FIS transfer in a command is for an odd number of 16-bit words, the transmitter’s
Transport layer is responsible for padding the final Dword of a FIS with zeros. If the HBA receives one
more word than is indicated in the PRD table due to this padding requirement, the HBA shall not signal
this as an overflow condition. In addition, if the HBA inserts padding as required in a FIS it is transmitting,
an overflow error shall not be indicated. The PRD Byte Count field shall be updated based on the
number of words specified in the PRD table, ignoring any additional padding.

5.4.2 PRD Interrupt

Caution: This feature should only be used in situations where it is known that the device only returns
valid data in FISes that have a correct CRC. If the device returns padded data with a correct CRC, there
is a potential for data corruption. It is the responsibility of the host driver to ensure that this feature is only
used when devices do not exhibit data padding behavior.

When a PRD entry is exhausted, the HBA may be told to generate an interrupt via the ‘I’ bit in the PRD
entry. Note, though, that a PRD is not considered exhausted until all Data FISes that transfer data that is
pointed to by that PRD entry is complete.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 70

For example, if the Data FIS is 8 KB, and this is covered by 3 PRD entries, the data is not considered
valid at the end of the first or second PRD, since CRC has not yet been checked, even though the data
has been copied to memory or the device. Therefore, if the ‘I’ bit is set in the PRD entry, the HBA must
hold onto it internally and not set PxIS.DPS until the Data FIS is complete and CRC is correct. Once
correct, PxIS.DPS can be set, and if PxIE.DPE and GHC.IE are set, the HBA shall generate an interrupt.

Conversely, if the PRD entry is 16 KB and two 8 KB Data FISes are used to transfer all of the data
pointed to by the PRD entry, then the PRD interrupt associated with that PRD entry shall not be signaled
until after the second Data FIS transfer has completed successfully.

The PRD Interrupt is an opportunistic interrupt. The PRD Interrupt should not be used to definitively
indicate the end of a transfer. Two PRD interrupts could happen close in time together such that the
second interrupt is missed when the first PRD interrupt is being cleared.

5.5 System Software Rules (Normative)

5.5.1 Basic Steps when Building a Command

When software builds a command for the HBA to execute, it first finds an empty command slot by reading
the PxCI and PxSACT registers for the port. An empty command slot has its respective bit cleared to ‘0’
in both the PxCI and PxSACT registers. After a free slot (slot pFreeSlot), is found:

1. Software builds a command FIS in system memory at location
PxCLB[CH(pFreeSlot)]:CFIS with the command type.

2. If it is an ATAPI command, the ACMD field shall be filled in with the ATAPI command
3. Software builds a command header at PxCLB[CH(pFreeSlot)] with:

a. PRDTL containing the number of entries in the PRD table
b. CFL set to the length of the command in the CFIS area
c. A bit set if it is an ATAPI command
d. W (Write) bit set if data is going to the device
e. P (Prefetch) bit optionally set (see rules in section 5.5.2)
f. If a Port Multiplier is attached, the PMP field set to the correct Port Multiplier port.

4. If it is a queued command, software shall first set PxSACT.DS(pFreeSlot). Software
should only write new bits to set to ‘1’; the previous register content of PxSACT should
not be re-written in the register write.

5. Software shall set PxCI.CI(pFreeSlot) to indicate to the HBA that a command is active.
Software should only write new bits to set to ‘1’; the previous register content of PxCI
should not be re-written in the register write.

5.5.2 Setting CH(pFreeSlot).P

When software builds commands for the HBA to execute, it may optionally set CH(pFreeSlot).P to enable
prefetching of PRDs and data. The HBA is not required to prefetch, but may use this bit to do so. To
avoid potential problems where the HBA may prefetch items it cannot use, software must obey the
following rules:

 Software shall not set CH(pFreeSlot).P when building queued ATA commands. The Serial
ATA device may run the commands in a different order than what is sent.

 Software shall not set CH(pFreeSlot).P when building commands to several devices behind a
Port Multiplier when FIS based switching is enabled. FISes may be received from a Port
Multiplier for a different device than what was just sent by the HBA.

If software does not obey these rules, indeterminate HBA behavior may result.

5.5.3 Processing Completed Commands

Software processes the interrupt generated by the device for command completion. In the interrupt
service routine, software checks IS.IPS to determine which ports have an interrupt pending.

For each port that has an interrupt pending:

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

71

1. Software determines the cause of the interrupt by reading the PxIS register. It is
possible for multiple bits to be set

2. Software clears appropriate bits in the PxIS register corresponding to the cause of
the interrupt.

3. Software clears the interrupt bit in IS.IPS corresponding to the port.
4. If executing non-queued commands, software reads the PxCI register, and compares

the current value to the list of commands previously issued by software that are still
outstanding. If executing native queued commands, software reads the PxSACT
register and compares the current value to the list of commands previously issued by
software. Software completes with success any outstanding command whose
corresponding bit has been cleared in the respective register. PxCI and PxSACT are
volatile registers; software should only use their values to determine commands that
have completed, not to determine which commands have previously been issued.

5. If there were errors, noted in the PxIS register, software performs error recovery
actions (see section 6.2.2).

5.6 Transfer Examples (Informative)

In all the following examples, it is assumed that PxCMD.ST has been set, and the HBA is only waiting for
a command to be placed in the command list. If PxCMD.ST is not set, software must do so at some
point. Additionally, software must ensure that the device has not changed connection status since the
last command was added by checking PxIS.PCS.

At any point, the Serial ATA link may be in a Partial or Slumber interface power management state. The
HBA shall ensure that the link is active before transmitting a FIS on the Serial ATA link (refer to section
8.3.1.3).

5.6.1 Macro States

In the following examples, the HBA traverses a series of states in the port state machine when performing
data transfers. To simplify the text in the examples, state sequences that are repeated are abbreviated
here in what are called macro-states. Each of these macro-states assumes no errors were encountered.

Macro State HBA State Machine States

Exam:Fetch P:Idle → P:SelectCmd → P:FetchCmd → P:Idle
Exam:Transmit P:Idle → CFIS:Xmit → CFIS:Success → P:Idle

Exam:AcceptNonData P:Idle → NDR:Entry → NDR:Accept
Exam:DMAReceive DR:Entry → DR:Receive → DR:UpdateByteCount → P:Idle
Exam:DMATransmit DX:Entry → DX:Transmit → DX:UpdateByteCount → P:Idle

Exam:PIOTransmit
PIO:Entry → DX:Entry → DX:Transmit → DX:UpdateByteCount →
 PIO:Update → PIO:ClearCI → PIO:SetIntr → PIO:SetIS → PIO:GenIntr →
 PM:Aggr

Exam:PIOReceive
DR:Entry → DR:Receive → DR:UpdateByteCount → PIO:Update →
 PIO:ClearCI → PIO:SetIntr → PIO:SetIS → PIO:GenIntr → PM:Aggr

Exam:D2HIntr
RegFIS:Entry → RegFIS:ClearCI → RegFIS:SetIntr → RegFIS:SetIS →
 RegFIS:GenIntr → RegFIS:UpdateSig → PM:Aggr

Exam:D2HNoIntr
RegFIS:Entry → RegFIS:ClearCI → RegFIS:UpdateSig →
 PM:Aggr

Exam:DMASetup
DmaSet:Entry → DmaSet:SetIntr → DmaSet:SetIS → DmaSet:GenIntr →
 DmaSet:AutoActivate

5.6.2 DMA Data Transfers

5.6.2.1 ATA DMA Write

Software builds a command as described in section 5.5.1. The command shall have a PRD table, is not
ATAPI, and is not queued. It is a DMA write (data to device), therefore CH(pFreeSlot).W (Write) shall be
set to ‘1’, and CH(pFreeSlot).P (Prefetch) may optionally be set to ‘1’ per the rules described in section
5.5.2.

The HBA shall transfer the command to the device traversing the macro states Exam:Fetch and
Exam:Transmit. If CH(pIssueSlot).P was set to ‘1’, the HBA shall execute the following states after

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 72

CFIS:Success in the Exam:Transmit macro state before returning to idle: CFIS:PrefetchPRD →
CFIS:PrefetchData → P:Idle.

As this was a DMA write command, the response from the device shall be a DMA Activate FIS. When
this arrives, the HBA shall accept the FIS by traversing the Exam:AcceptNonData macro state, and shall
send a Data FIS by traversing the Exam:DMATransmit macro state.

If the Data FIS did not satisfy the transfer count, another DMA Activate FIS shall be sent from the device,
and the HBA shall traverse the Exam:AcceptNonData and Exam:DMATransmit macro states again to
send another Data FIS. This process continues until the transfer count is satisfied. When the Data FIS
that completes the transfer count finishes, the next FIS from the device shall be a D2H Register FIS.

The HBA shall accept this FIS by traversing the Exam:AcceptNonData macro state. If the D2H Register
FIS had the ‘I’ bit set to ‘1’, the HBA shall traverse the Exam:D2HIntr macro state. If the ‘I’ bit was not set
to ‘1’, the HBA shall traverse the Exam:D2HNoIntr state.

If this was the last command, and the HBA was enabled for aggressive power management, the HBA
shall first request the link to be placed in either the Partial or Slumber interface power management state
after the PM:Aggr state.

5.6.2.2 ATAPI Packet DMA Write

Software builds a command as described in section 5.5.1. The command shall have a PRD table, is
ATAPI, and is not queued. It is a DMA write (data to device), therefore CH(pFreeSlot).W (Write) shall be
set to ‘1’, and CH(pFreeSlot).P (Prefetch) may optionally be set per the rules described in section 5.5.2.

The HBA shall transfer the command to the device traversing the macro states Exam:Fetch and
Exam:Transmit. If CH(pIssueSlot).P was set, the HBA shall execute the following states after
CFIS:Success in the Exam:Transmit macro state before returning to idle: CFIS:PrefetchACMD →
CFIS:PrefetchPRD → CFIS:PrefetchData → P:Idle.

Since this was an ATAPI command, the next FIS from the device shall be a PIO Setup FIS. The HBA
traverses the Exam:AcceptNonData macro state to accept this FIS, and then traverses the following
states to transfer the ACMD field to the device: PIO:Entry → ATAPI:Entry → PIO:Update → P:Idle

As this command results in a DMA write, the response from the device shall be a DMA Activate FIS.
When this arrives, the HBA shall accept the FIS by traversing the Exam:AcceptNonData macro state,
and shall send a Data FIS by traversing the Exam:DMATransmit macro state.

If the Data FIS did not satisfy the transfer count, another DMA Activate FIS shall be sent from the device,
and the HBA shall traverse the Exam:AcceptNonData and Exam:DMATransmit macro states again to
send another Data FIS. This process continues until the transfer count is satisfied. When the Data FIS
that completes the transfer count finishes, the next FIS from the device shall be a D2H Register FIS.

The HBA shall accept this FIS by traversing the Exam:AcceptNonData macro state. If the D2H Register
FIS had the ‘I’ bit set to ‘1’, the HBA shall traverse the Exam:D2HIntr macro state. If the ‘I’ bit was not set
to ‘1’, the HBA shall traverse the Exam:D2HNoIntr state.

If this was the last command, and the HBA was enabled for aggressive power management, the HBA
shall first request the link to be placed in either the Partial or Slumber interface power management state
after the PM:Aggr state.

5.6.2.3 ATA DMA Read

Software builds a command as described in section 5.5.1. The command shall have a PRD table, is not
ATAPI, and is not queued. It is a DMA read (data to memory), therefore CH(pFreeSlot).W (Write) shall be
cleared to ‘0’, and CH(pFreeSlot).P (Prefetch) may optionally be set to ‘1’ per the rules described in
section 5.5.2.

The HBA shall transfer the command to the device traversing the macro states Exam:Fetch and
Exam:Transmit. If CH(pIssueSlot).P was set to ‘1’, the HBA shall execute the following states after
CFIS:Success in the Exam:Transmit macro state before returning to idle: CFIS:PrefetchPRD → P:Idle

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

73

As this was a DMA read command, the response from the device shall be a Data FIS. When this arrives,
the HBA shall traverse the Exam:DMAReceive macro state.

If the Data FIS did not satisfy the transfer count, another Data FIS shall be sent from the device, and the
HBA shall traverse the Exam:DMAReceive macro states again. This process continues until the transfer
count is satisfied. When the Data FIS that completes the transfer count finishes, the next FIS from the
device shall be a D2H Register FIS.

The HBA shall accept this FIS by traversing the Exam:AcceptNonData macro state. If the D2H Register
FIS had the ‘I’ bit set to ‘1’, the HBA shall traverse the Exam:D2HIntr macro state. If the ‘I’ bit was not set
to ‘1’, the HBA shall traverse the Exam:D2HNoIntr state.

If this was the last command, and the HBA was enabled for aggressive power management, the HBA
shall first request the link to be placed in either the Partial or Slumber interface power management state
after the PM:Aggr state.

5.6.2.4 ATAPI Packet DMA Read

Software builds a command as described in section 5.5.1. The command shall have a PRD table, is
ATAPI, and is not queued. It is a DMA read (data to memory), therefore CH(pFreeSlot).W (Write) shall be
cleared to ‘0’, and CH(pFreeSlot).P (Prefetch) may optionally be set to ‘1’ per the rules described in
section 5.5.2.

The HBA shall transfer the command to the device traversing the macro states Exam:Fetch and
Exam:Transmit. If CH(pIssueSlot).P was set to ‘1’, the HBA shall execute the following states after
CFIS:Success in the Exam:Transmit macro state before returning to idle: CFIS:PrefetchACMD →
CFIS:PrefetchPRD → P:Idle.

Since this was an ATAPI command, the next FIS from the device shall be a PIO Setup FIS. The HBA
traverses the Exam:AcceptNonData macro state to accept this FIS, and then traverses the following
states to transfer the ACMD field to the device: PIO:Entry → ATAPI:Entry → PIO:Update → P:Idle.

As this command results in a DMA read, the response from the device shall be a Data FIS. When this
arrives, the HBA shall traverse the Exam:DMAReceive macro state.

If the Data FIS did not satisfy the transfer count, another Data FIS shall be sent from the device, and the
HBA shall traverse the Exam:DMAReceive macro states again. This process continues until the transfer
count is satisfied. When the Data FIS that completes the transfer count finishes, the next FIS from the
device shall be a D2H Register FIS.

The HBA shall accept this FIS by traversing the Exam:AcceptNonData macro state. If the D2H Register
FIS had the ‘I’ bit set to ‘1’, the HBA shall traverse the Exam:D2HIntr macro state. If the ‘I’ bit was not set
to ‘1’, the HBA shall traverse the Exam:D2HNoIntr state.

If this was the last command, and the HBA was enabled for aggressive power management, the HBA
shall first request the link to be placed in either the Partial or Slumber interface power management state
after the PM:Aggr state.

5.6.3 PIO Data Transfers

The following sections describe data transfers to and from a device using PIO as the command protocol
type. PIO data transfers are highly discouraged because of the inadequate error handling coverage for
PIO read commands. Some AHCI implementations may choose to only implement support to transfer a
single DRQ block in a PIO command. If CAP.PMD is cleared to ‘0’, then the HBA only supports single
DRQ block PIO transfers and software must ensure commands are not issued to the device that are for
more than one DRQ block of data. Note that when CAP.PMD is cleared to ‘0’, drive functionality is
reduced. It is recommended that implementations support multiple DRQ block PIO operation.

Software should ensure that for ATA devices the SET MULTIPLE MODE count is set to a value that is
less than or equal to 16. Software should ensure that for ATAPI devices, the maximum byte count is set
to 8KB for the PACKET command. This is required by Serial ATA to ensure that Data FISes are no larger
than 8KB.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 74

From the HBA’s point of view, PIO data transfers look like a DMA transfer. A command table is set up,
and the data is bus mastered from or to system memory by the HBA.

5.6.3.1 ATA PIO Write

Software builds a command as described in section 5.5.1. The command shall have a PRD table, is not
ATAPI, and is not queued. It is a PIO Write (data to device), therefore CH(pFreeSlot).W (Write) shall be
set to ‘1’, and CH(pFreeSlot).P (Prefetch) may optionally be set to ‘1’ per the rules described in section
5.5.2.

The HBA shall transfer the command to the device traversing the macro states Exam:Fetch and
Exam:Transmit. If CH(pIssueSlot).P was set, the HBA shall execute the following states after
CFIS:Success in the Exam:Transmit macro state before returning to idle: CFIS:PrefetchPRD →
CFIS:PrefetchData → P:Idle.

As this was a PIO write command, the response from the device shall be a PIO Setup FIS. When this
arrives, the HBA shall accept the FIS by traversing the Exam:AcceptNonData macro state. It shall then
traverse the Exam:PIOTransmit macro state to send a Data FIS.

Since this was PIO write command, the device shall next send a D2H Register FIS. The HBA shall
accept this FIS by traversing the Exam:AcceptNonData macro state. If the D2H Register FIS had the ‘I’
bit set to ‘1’, the HBA shall traverse the Exam:D2HIntr macro state. If the ‘I’ bit was not set to ‘1’, the
HBA shall traverse the Exam:D2HNoIntr state.

If this was the last command, and the HBA was enabled for aggressive power management, the HBA
shall first request the link to be placed in either the Partial or Slumber interface power management state
after the PM:Aggr state.

5.6.3.2 ATAPI Packet PIO Write

Software builds a command as described in section 5.5.1. The command shall have a PRD table, is
ATAPI, and is not queued. It is a PIO Write (data to device), therefore CH(pFreeSlot).W (Write) shall be
set to ‘1, and CH(pFreeSlot).P (Prefetch) may optionally be set to ‘1’ per the rules described in section
5.5.2.

The HBA shall transfer the command to the device traversing the macro states Exam:Fetch and
Exam:Transmit. If CH(pIssueSlot).P was set to ‘1’, the HBA shall execute the following states after
CFIS:Success in the Exam:Transmit macro state before returning to idle: CFIS:PrefetchACMD →
CFIS:PrefetchPRD → CFIS:PrefetchData → P:Idle.

Since this was an ATAPI command, the next FIS from the device shall be a PIO Setup FIS. The HBA
traverses the Exam:AcceptNonData macro state to accept this FIS, and then traverses the following
states to transfer the ACMD field to the device: PIO:Entry → ATAPI:Entry → PIO:Update → P:Idle

As this was a PIO Write command, the response from the device shall be a PIO Setup FIS. When this
arrives, the HBA shall accept the FIS by traversing the Exam:AcceptNonData macro state. It shall then
traverse the Exam:PIOTransmit macro state to send a Data FIS to the device.

Since this was an PIO ATAPI write command, the device shall send a D2H Register FIS. The HBA shall
accept this FIS by traversing the Exam:AcceptNonData macro state. If the D2H Register FIS had the ‘I’
bit set to ‘1’, the HBA shall traverse the Exam:D2HIntr macro state. If the ‘I’ bit was not set to ‘1’, the
HBA shall traverse the Exam:D2HNoIntr state.

If this was the last command, and the HBA was enabled for aggressive power management, the HBA
shall first request the link to be placed in either the Partial or Slumber interface power management state
after the PM:Aggr state.

5.6.3.3 ATA PIO Read

Software builds a command as described in section 5.5.1. The command shall have a PRD table, is not
ATAPI, and is not queued. It is a PIO Read (data to memory), therefore CH(pFreeSlot).W (Write) shall be
cleared to ‘0’, and CH(pFreeSlot).P (Prefetch) may optionally be set to ‘1’ per the rules described in
section 5.5.2.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

75

The HBA shall transfer the command to the device traversing the macro states Exam:Fetch and
Exam:Transmit. If CH(pIssueSlot).P was set to ‘1’, the HBA shall execute the following states after
CFIS:Success in the Exam:Transmit macro state before returning to idle: CFIS:PrefetchPRD → P:Idle

As this was a PIO read command, the response from the device shall be a PIO Setup FIS. When this
arrives, the HBA shall accept the FIS by traversing the Exam:AcceptNonData macro state. It shall then
traverse the states PIO:Entry → P:Idle, and await a Data FIS from the device.

When the Data FIS arrives, the HBA traverses the Exam:PIOReceive macro state.

If this was the last command, and the HBA was enabled for aggressive power management, the HBA
shall first request the link to be placed in either the Partial or Slumber interface power management state
after the PM:Aggr state.

5.6.3.4 ATAPI Packet PIO Read

Software builds a command as described in section 5.5.1. The command shall have a PRD table, is
ATAPI, and is not queued. It is a PIO Read (data to memory), therefore CH(pFreeSlot).W (Write) shall be
cleared to ‘0’, and CH(pFreeSlot).P (Prefetch) may optionally be set to ‘1’ per the rules described in
section 5.5.2.

The HBA shall transfer the command to the device traversing the macro states Exam:Fetch and
Exam:Transmit. If CH(IssueSlot).P was set to ‘1’, the HBA shall execute the following states after
CFIS:Success in the Exam:Transmit macro state before returning to idle: CFIS:PrefetchACMD →
CFIS:PrefetchPRD → P:Idle.

Since this was an ATAPI command, the next FIS from the device shall be a PIO Setup FIS. The HBA
traverses the Exam:AcceptNonData macro state to accept this FIS, and then traverses the following
states to transfer the ACMD field to the device: PIO:Entry → ATAPI:Entry → PIO:Update → P:Idle

As this was a PIO read command, the response from the device shall be a PIO Setup FIS. When this
arrives, the HBA shall accept the FIS by traversing the Exam:AcceptNonData macro state. It shall then
traverse the states PIO:Entry → H:Idle, and await a Data FIS from the device.

When the Data FIS arrives, the HBA traverses the Exam:PIOReceive macro state.

Since this was an ATAPI command, the device shall next send a D2H Register FIS. The HBA shall
accept this FIS by traversing the Exam:AcceptNonData macro state. If the D2H Register FIS had the ‘I’
bit set, the HBA shall traverse the Exam:D2HIntr macro state. If the ‘I’ bit was not set, the HBA shall
traverse the Exam:D2HNoIntr state.

If this was the last command, and the HBA was enabled for aggressive power management, the HBA
shall first request the link to be placed in either the Partial or Slumber interface power management state
after the PM:Aggr state.

5.6.4 Native Queued Command Transfers

5.6.4.1 Introduction

The ATA/ATAPI-7 queued feature set is not supported by AHCI (including the READ QUEUED (EXT),
WRITE QUEUED (EXT), and SERVICE commands). Queued operations are supported in AHCI using
the READ FPDMA QUEUED and WRITE FPDMA QUEUED commands when the HBA and device
support native command queuing.

To allow a simple mechanism for the HBA to map command list slots to queue entries, software must
match the tag number it uses to the slot it is placing the command in. For example, if a queued command
is placed in slot 5, the tag for that command must be 5.

System software must determine the maximum tag allowed by the device and the HBA and it must use
the lower bound of the two. For example, if the HBA has 8 entries in its command list, and the SATA
device only has 4, only tags 0 – 3 in the device may be used, and only command list entries 0 – 3 may be
used in the HBA.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 76

Data transfers are activated with the flow described below via the DMA Setup FIS, and command
completion is performed via the Set Device Bits FIS.

5.6.4.2 Example

In the following example, the following occurs:

 System software places 4 commands in system memory:
o Slot 0 contains a READ FPDMA QUEUED
o Slot 2 contains a WRITE FPDMA QUEUED
o Slot 5 contains a READ FPDMA QUEUED
o Slot 8 contains a WRITE FPDMA QUEUED

 The HBA fetches the first 3 commands, transfers them to the device, and receives a
successful completion.

 Before the HBA can send the 4
th
 command to the device, the device sends a DMA Setup FIS

to transfer data for the command in slot 2.

 A data transfer occurs to slot 2.

 The HBA transfers slot 8 to the device.

 A data transfer occurs to slot 5.

 The device sends an SDB FIS to clear slots 2 and 5.

 A data transfer occurs to slot 8.

 The device sends an SDB FIS to clear slot 8.

 A data transfer occurs to slot 0.

 The device sends an SDB FIS to clear slot 0.

Other items to note in this data flow:

 In both WRITE FPDMA QUEUED commands, the auto-activate bit is not set in the FIS.

 Every SDB FIS received has the ‘I’ bit set to ‘1’.

Following is a text description for the flow.

System Software Places 4 Commands in System Memory

Software builds a command into slot 0 as described in section 5.5.1. The command shall have a
PRD table, is not ATAPI, and has a READ FPDMA QUEUED opcode. CH(0).W (Write) shall be
cleared to ‘0’, and CH(0).P (Prefetch) shall be cleared to ‘0’.

Software builds a command into slot 2 as described in section 5.5.1. The command shall have a
PRD table, is not ATAPI, and has a WRITE FPDMA QUEUED opcode. CH(2).W (Write) shall be set
to ‘1’ and CH(2).P (Prefetch) shall be cleared to ‘0’.

Software builds a command into slot 5 as described in section 5.5.1. The command shall have a
PRD table, is not ATAPI, and has a READ FPDMA QUEUED opcode. Both CH(5).W (Write) and
CH(5).P (Prefetch) shall be cleared to ‘0’.

Software builds a command into slot 8 as described in section 5.5.1. The command shall have a
PRD table, is not ATAPI, and has a WRITE FPDMA QUEUED opcode. CH(8).W (Write) shall be set
to ‘1’, and CH(8).P (Prefetch) shall be cleared to ‘0’.

At this point, the PxCI and PxSACT register values are “00000125h” (bits 0, 2, 5, and 8 are set).

The HBA transmits the First 3 Commands to the Device

The HBA shall transfer the command from slot 0 to the device traversing the macro states
Exam:Fetch and Exam:Transmit. As this was a native queued command, the next FIS from the
device shall be a D2H Register FIS with the ‘I’ bit cleared to ‘0’.

The HBA shall accept this FIS by traversing the Exam:AcceptNonData macro state. The ‘I’ bit was
cleared to ‘0’ so the HBA shall traverse the Exam:D2HNoIntr state. PxCI is now equal to
“00000124h”.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

77

The HBA shall transfer the command from slot 2 to the device traversing the macro states
Exam:Fetch and Exam:Transmit. As this was a native queued command, the next FIS from the
device shall be a D2H Register FIS with the ‘I’ bit cleared to ‘0’.

The HBA shall accept this FIS by traversing the Exam:AcceptNonData macro state. The ‘I’ bit was
cleared to ‘0’ so the HBA shall traverse the Exam:D2HNoIntr state. PxCI is now equal to
“00000120h”.

The HBA shall transfer the command from slot 5 to the device traversing the macro states
Exam:Fetch and Exam:Transmit. As this was a native queued command, the next FIS from the
device shall be a D2H Register FIS with the ‘I’ bit cleared to ‘0’.

The HBA shall accept this FIS by traversing the Exam:AcceptNonData macro state. The ‘I’ bit was
cleared to ‘0’ so the HBA shall traverse the Exam:D2HNoIntr state. PxCI is now equal to
“00000100h”.

DMA Setup FIS Arrives for slot 2

The HBA is now in an idle state, but before it can fetch a new command, a short FIS arrives from the
device. This FIS is the DMA Setup FIS. The HBA shall accept this FIS by traversing the
Exam:AcceptNonData macro state, and then traverses the Exam:DMASetup macro state to
process the DMA Setup FIS. The tag indicated in the FIS was for slot 2.

Data Transfer for slot 2

As this was a DMA write command, and the auto-activate bit was not set in the FIS, the next FIS from
the device shall be a DMA Activate FIS. When this arrives, the HBA shall accept the FIS by
traversing the Exam:AcceptNonData macro state, and shall send a Data FIS by traversing the
Exam:DMATransmit macro state.

If the Data FIS did not satisfy the transfer count, another DMA Activate FIS shall be sent from the
device, and the HBA shall traverse the Exam:AcceptNonData and Exam:DMATransmit macro
states again to send another Data FIS. This process continues until the transfer count is satisfied.
The state machine is now in P:Idle

HBA transfers slot 8 to the device

Since PxCI is not all 0h, and no other FIS is coming in from the device, the HBA shall transfer the
command from slot 8 to the device traversing the macro states Exam:Fetch and Exam:Transmit.
As this was a native queued command, the next FIS from the device shall be a D2H Register FIS with
the ‘I’ bit cleared to ‘0’.

The HBA shall accept this FIS by traversing the Exam:AcceptNonData macro state. The ‘I’ bit was
cleared to ‘0’ so the HBA shall traverse the Exam:D2HNoIntr state. PxCI is now equal to
“00000000h”.

Data transfer to slot 5

A short FIS arrives from the device of type DMA Setup FIS. The HBA shall accept this FIS by
traversing the Exam:AcceptNonData macro state, and then traverses the Exam:DMASetup macro
state to process the DMA Setup FIS. The tag indicated in the FIS was for slot 5.

As this was a DMA read command, the next FIS from the device shall be a Data FIS. When this
arrives, the HBA shall traverse the Exam:DMAReceive macro state.

If the Data FIS did not satisfy the transfer count, another Data FIS shall be sent from the device, and
the HBA shall traverse the Exam:DMAReceive macro states again. This process continues until the
transfer count is satisfied. The HBA state machine is now in P:Idle.

Device sends SDB FIS to clear slots 2 and 5

At this point, the device sends an SDB FIS to indicate slots 2 and 5 are complete. The HBA shall
accept this FIS by traversing the Exam:AcceptNonData macro state, and then traverses the
SDB:Entry, and, since the received FIS had the ‘I’ bit set, the SDB:SetIntr → SDB:SetIS →

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 78

SDB:GenIntr states, and returns to PM:Aggr → P:Idle. The PxSACT register is now equal to
“00000101h”.

Data transfer occurs to slot 8

A short FIS arrives from the device of type DMA Setup FIS. The HBA shall accept this FIS by
traversing the Exam:AcceptNonData macro state, and then traverses the Exam:DMASetup macro
state to process the DMA Setup FIS. The tag indicated in the FIS was for slot 8.

As this was a DMA write command, and the auto-activate bit was not set in the FIS, the next FIS from
the device shall be a DMA Activate FIS. When this arrives, the HBA shall accept the FIS by
traversing the Exam:AcceptNonData macro state, and shall send a Data FIS by traversing the
Exam:DMATransmit macro state.

If the Data FIS did not satisfy the transfer count, another DMA Activate FIS shall be sent from the
device, and the HBA shall traverse the Exam:AcceptNonData and Exam:DMATransmit macro
states again to send another Data FIS. This process continues until the transfer count is satisfied.
The HBA state machine is now in P:Idle.

Device sends SDB FIS to clear slot 8

At this point, the device sends an SDB FIS to indicate slot 8 is complete. The HBA shall accept this
FIS by traversing the Exam:AcceptNonData macro state, and then traverses the SDB:Entry, and,
since the received FIS had the ‘I’ bit set, the SDB:SetIntr → SDB:SetIS → SDB:GenIntr states, and
returns to PM:Aggr → P:Idle. The PxSACT register is now equal to “00000001h”.

Data transfer occurs to slot 0

A short FIS arrives from the device of type DMA Setup FIS. The HBA shall accept this FIS by
traversing the Exam:AcceptNonData macro state, and then traverses the Exam:DMASetup macro
state to process the DMA Setup FIS. The tag indicated in the FIS was for slot 2.

As this was a DMA read command, the next FIS from the device shall be a Data FIS. When this
arrives, the HBA shall traverse the Exam:DMAReceive macro state.

If the Data FIS did not satisfy the transfer count, another Data FIS shall be sent from the device, and
the HBA shall traverse the Exam:DMAReceive macro states again. This process continues until the
transfer count is satisfied. The HBA state machine is now in P:Idle.

Device sends SDB FIS to clear slot 0

At this point, the device sends an SDB FIS to indicate slot 0 is complete. The HBA shall accept this
FIS by traversing the Exam:AcceptNonData macro state, and then traverses the SDB:Entry, and,
since the received FIS had its I bit set, the SDB:SetIntr → SDB:SetIS → SDB:GenIntr states, and
returns to PM:Aggr. The PxSACT register is now equal to “00000000h”.

Since the PxCI and PxSACT registers are now both equal to “00000000h”, if the HBA was enabled
for aggressive power management, the HBA shall first request the link to be placed in either the
Partial or Slumber power management after the PM:Aggr state.

5.6.4.3 NCQ Unload (Informative)

When using Native Command Queuing in a laptop environment, the host needs to be able to park the
head due to excessive movement (e.g. the laptop being dropped). The IDLE IMMEDIATE command with
the Unload Feature as defined in ATA/ATAPI-7 clause 6.20 instructs the device to park its head and stop
processing any outstanding commands. This command may be issued while FPDMA READ QUEUED
and FPDMA WRITE QUEUED commands are outstanding on the host. For more information on IDLE
IMMEDIATE with the Unload Feature please reference SATA 2.6 or ATA/ATAPI-7.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

79

5.6.5 FIS-based Switching Command Transfers

5.6.5.1 Introduction

When using Port Multipliers in a FIS-based switching fashion, the HBA has additional responsibilities to
ensure high performance data transfers amongst multiple devices attached behind a single port.

5.6.5.2 Example

In the following example, the following occurs:

 System software places four commands in system memory for two separate devices:
o Slot 0 contains a READ FPDMA QUEUED for PM port of 3 and NCQ tag of 0
o Slot 2 contains a WRITE DMA EXT for device with PM port of 7
o Slot 5 contains a READ DMA EXT for device with PM port of 7
o Slot 8 contains a WRITE FPDMA QUEUED for PM port of 3 and NCQ tag of 8

The prefetch bit in the command headers shall always be cleared to ‘0’ for FIS-based switching
operation.

Following is a text description for the flow.

System Software Places four Commands in System Memory

Software builds a command into slot 8 as described in section 5.5.1. The command shall have a
PRD table, is not ATAPI, has a WRITE FPDMA QUEUED opcode, has an NCQ tag of 8, and the PM
port is set to 3. CH(8).W (Write) shall be set to ‘1’ and CH(8).P (Prefetch) shall be cleared to ‘0’.
Software writes 100h to the PxSACT register. Software then writes 100h to the PxCI register.

Software builds a command into slot 5 as described in section 5.5.1. The command shall have a
PRD table, is not ATAPI, has a READ DMA EXT opcode, and the PM port is set to 7. Both CH(5).W
(Write) and CH(5).P (Prefetch) shall be cleared to ‘0’. Software writes 20h to the PxCI register.

Software builds a command into slot 0 as described in section 5.5.1. The command shall have a
PRD table, is not ATAPI, has a READ FPDMA QUEUED opcode, has an NCQ tag of 0, and the PM
port is set to 3. CH(0).W (Write) shall be cleared to ‘0’, and CH(0).P (Prefetch) shall be cleared to ‘0’.
Software writes 1h to the PxSACT register. Software then writes 1h to the PxCI register.

Software builds a command into slot 2 as described in section 5.5.1. The command shall have a
PRD table, is not ATAPI, has a WRITE DMA EXT opcode, and the PM port is set to 7. CH(2).W
(Write) shall be set to ‘1’ and CH(2).P (Prefetch) shall be cleared to ‘0’. Software writes 4h to the
PxCI register.

At this point, the PxCI value is “00000125h” and the PxSACT register value is “00000101h” (bits 0
and 8 of PxSACT are set corresponding to the tags of the NCQ commands).

The HBA transmits Two Commands to the Device

The HBA may begin command sequences with either PM port 3 or PM port 7 first. The HBA shall
maintain command ordering for each PM port, so the HBA may issue the command in slot 5 (for PM
port 7) or slot 8 (for PM port 3). For this example, the HBA proceeds to issue the command in slot 8
first.

The HBA shall transfer the command from slot 8 to the device with PM port 3 traversing the macro
states Exam:Fetch and Exam:Transmit. As this was a native queued command, the next FIS from
the device with PM port 3 shall be a D2H Register FIS with the ‘I’ bit cleared to ‘0’.

The HBA shall then transfer the command for slot 5 to the device with PM port 7 traversing the macro
states Exam:Fetch and Exam:Transmit. As this was a non-queued read command, the next FIS
from the device with PM port 7 shall be a Data FIS.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 80

D2H Register FIS arrives for PM port 3, slot 8

The command transferred to PM port 3 was an NCQ command, so the next FIS received from this
device will be a D2H Register FIS. As a result of receiving the D2H Register FIS, the PxCI value is
now “0000 0025h” since the DRQ, BSY, and ERR bits are cleared to zero.

The HBA then transfers the command from slot 0 to the device with PM port 3 traversing the macro
states Exam:Fetch and Exam:Transmit. As this was a native queued command, the next FIS from
the device with PM port 3 shall be a D2H Register FIS with the ‘I’ bit cleared to ‘0’.

Data Transfer for PM port 7, slot 5

The command issued to PM port 7 was a READ DMA EXT command, so the next FIS to receive is a
Data FIS. When the Data FIS arrives, the HBA shall traverse the Exam:DMAReceive macro state. If
the Data FIS did not satisfy the transfer count, another Data FIS shall be sent by the device and the
HBA will again traverse the Exam:DMAReceive macro state. This process continues until the
transfer count is satisfied. Note that FISes for other PM ports (port 3 in this case) may be
interspersed between multiple Data FISes.

DMA Setup FIS arrives for PM port 3, slot 8

As this is a WRITE FPDMA QUEUED command, the next FIS from the device shall be a DMA Setup
FIS. When this arrives, the HBA shall accept the FIS by traversing the Exam:AcceptNonData macro
state, and shall send a Data FIS by traversing the Exam:DMATransmit macro state.

If the Data FIS did not satisfy the transfer count, another DMA Activate FIS shall be sent from the
device, and the HBA shall traverse the Exam:AcceptNonData and Exam:DMATransmit macro
states again to send another Data FIS. This process continues until the transfer count is satisfied.
Note that FISes for other PM ports (port 7 in this case) may be interspersed between multiple Data
FISes.

D2H Register FIS arrives for PM port 3, slot 0

The command transferred to PM port 3 was an NCQ command, so the next FIS received from this
device will be a D2H Register FIS. As a result of receiving the D2H Register FIS, the PxCI value is
now “0000 0024h” since the DRQ, BSY, and ERR bits are cleared to zero.

D2H Register FIS arrives for PM port 7, slot 5

The command transferred to PM port 7 was a READ DMA EXT, so the next D2H Register FIS
received from this device will complete the transfer and update PxCI. The PxCI value is now “0000
0004h” since DRQ, BSY, and ERR bits are cleared to zero.

The HBA is now free to transfer the next command for port 7, which is located in slot 2.

SDB FIS arrives for PM port 3, slot 8

As a result of receiving the SDB FIS, the PxSACT value is now “0000 0001h”.

The HBA transmits One Command to the Device

The HBA may now begin the command sequence for PM port 7.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

81

The HBA shall then transfer the command for slot 2 to the device with PM port 7 traversing the macro
states Exam:Fetch and Exam:Transmit. As this was a non-queued write command, the next FIS
from the device with PM port 7 shall be a DMA Activate FIS.

Data Transfer for PM port 7, slot 2

As this was a WRITE DMA EXT command, the response from the device shall be a DMA Activate
FIS. When this arrives, the HBA shall accept the FIS by traversing the Exam:AcceptNonData macro
state, and shall send a Data FIS by traversing the Exam:DMATransmit macro state.

If the Data FIS did not satisfy the transfer count, another DMA Activate FIS shall be sent from the
device, and the HBA shall traverse the Exam:AcceptNonData and Exam:DMATransmit macro
states again to send another Data FIS. This process continues until the transfer count is satisfied.
When the Data FIS that completes the transfer count finishes, the next FIS from the device shall be a
D2H Register FIS.

D2H Register FIS arrives for PM port 7, slot 2

The command transferred to PM port 7 was a WRITE DMA EXT, so the next D2H Register FIS
received from this device will complete the transfer and update PxCI. The PxCI value is now “0000
0000h” since DRQ, BSY, and ERR bits are cleared to zero.

DMA Setup FIS arrives for PM port 3, slot 0

The HBA shall accept this FIS by traversing the Exam:AcceptNonData macro state, and then
traverses the Exam:DMASetup macro state to process the DMA Setup FIS. As this was a READ
FPDMA QUEUED command, the next FIS from the device shall be a Data FIS.

Data Transfer for PM port 3, slot 0

As this was a READ FPDMA QUEUED command, the next FIS from the device shall be a Data FIS.
When this arrives, the HBA shall traverse the Exam:DMAReceive macro state.

If the Data FIS did not satisfy the transfer count, another Data FIS shall be sent from the device, and
the HBA shall traverse the Exam:DMAReceive macro states again. This process continues until the
transfer count is satisfied.

SDB FIS arrives for PM port 3, slot 8

As a result of receiving the SDB FIS, the PxSACT value is now “0000 0000h”.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 82

6 Error Reporting and Recovery

All errors within an HBA occur within ports. There are no errors that apply to the entire host controller.
There are several sources of errors that could occur during a transfer. Examples of errors are:

 System Memory – Bad system memory pointers cause data fetches and stores to be lost

 Interface / Device - such as CRC problems, illegal state machine transitions, etc.

6.1 Error Types

6.1.1 System Memory Errors

System memory errors such as target abort, master abort, and parity may cause the host to stop
processing the currently running command. These are serious errors that cannot be recovered from
without software intervention (section 6.2.2).

A master/target abort error occurs when system software has given a pointer to the HBA that does not
exist in physical memory. When this occurs, the HBA aborts the transfer (if necessary) as described in
section 6.2.1. When this is complete, the HBA sets PxIS.HBFS. If PxIE.HBFE and GHC.IE are set, the
HBA shall also generate an interrupt. .

A data error (such as CRC or parity), may or may not be transient. If the error occurred on a fetch of a
CFIS, PRD entry or command list, the HBA shall stop. If the error occurred on a data FIS or the ACMD
field, the HBA is allowed to stop, but may also continue. When a data error occurs, the HBA aborts the
transfer (if necessary) as described in section 6.2.1. When this is complete, the HBA sets PxIS.HBDS. If
PxIE.HBDE and GHC.IE are set, the HBA shall also generate an interrupt.

If the HBA continue after a data error on a data or ACMD field, it shall poison the CRC of the Data FIS it
transfers to the device.

6.1.2 Interface Errors

Interface errors are errors that occur due to electrical issues on the interface, or protocol
miscommunication between the device and HBA. Depending on the type of error, different bits in the
PxSERR register are set. When these bits are set, either PxIS.IFS (fatal) or PxIS.INFS (non-fatal) shall
be set, and if enabled, the HBA shall generate an interrupt.

Conditions that cause PxIS.IFS/PxIS.INFS to be set are:

 In the PxSERR.ERR field, the P bit is set to ‘1’

 In the PxSERR.DIAG field, the C or H bit is set to ‘1’

 PhyRdy drops unexpectedly

Examples of these types of errors are below, with the corresponding PxSERR bit that is set if appropriate.

The only difference between PxIS.IFS and PxIS.INFS being set is the type of FIS that is being
transmitted/received when the error occurs. If the error occurred during a non-Data FIS, the FIS must be
retransmitted, so the error is non-fatal and PxIS.INFS is set. If the error occurred during a Data FIS, the
transfer shall stop, so the error is fatal and PxIS.IFS is set.

In the case of a non-Data FIS error, between seeing a non-Data FIS fail and the attempt to re-transmit,
the HBA may receive other FISes from the device (this will most likely happen when performing native
command queuing commands). When this occurs, the HBA must accept the FIS, perform the correct
actions, and then retry the failed FIS.

If the HBA was transmitting a Data FIS it does not retry the FIS and waits for software to clear the
PxCMD.ST bit to ‘0’. The HBA shall retransmit a non-Data FIS continuously after a failure until either the
transfer succeeds or system software stops the controller by clearing PxCMD.ST to ‘0’.

 Received Disparity Error / Illegal Character (K28.3): When a disparity error is encountered, the
HBA assumes the disparity of this character is correct and resets the running disparity counter in
the 8b/10b decoder. No error bits are set.

 Received Disparity Error / Illegal Character (D): When this occurs, the HBA returns R_ERR at
the end of the FIS. It sets PxSERR.DIAG.B. Note that PxIS.IFS/PxIS.INFS shall not be set; the

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

83

CRC error that is likely to occur due to this event will set the appropriate bit. If there is an illegal
character outside the FIS boundaries, the HBA may ignore the event and is not required to set
PxSERR.DIAG.B.

 PhyRdy Dropping Unexpectedly: When this occurs, the HBA returns to idle. If the PhyRdy
signal dropped during the middle of a command, the HBA may have to be restarted. If the
PhyRdy signal dropped outside of a FIS, neither the PxIS.IFS nor the PxIS.INFS bits shall be set.

 Calculated Different CRC than Received: When this occurs, the HBA returns R_ERR and
returns to idle. It sets PxSERR.DIAG.C

 Incorrect FIS or FIS with Illegal Length for Corresponding FIS Type Received: When this
occurs, the HBA returns R_ERR at end of the FIS, shall not post the FIS to memory, and returns
to idle. It sets PxSERR.ERR.P. This can only be done for supported FIS types. An unknown FIS
is not considered an illegal FIS, unless the length received is more than 64 bytes. If an unknown
FIS arrives with length <= 64 bytes, it is posted and the HBA continues normal operation.

 Internal Buffer Overflow: This occurs when the HBA sends a HOLD, but a HOLDA was not
received quickly enough by the HBA, and the HBA’s internal data FIFOs overflow. The HBA
returns R_ERR at the end of the FIS. It sets PxSERR.ERR.P.

 HBA Receives R_ERR: If the HBA receives an R_ERR to a FIS it was transmitting, it sets
PxSERR.DIAG.H.

 FIS received from a device, where both BSY and DRQ are to be updated in the Status
register and both PxTFD.STS.BSY and PxTFD.STS.DRQ are cleared: When this occurs, the
HBA returns R_OK, does not set any error bits, and does not update any registers or the received
FIS area based on the received FIS (i.e. the FIS is ignored). No error bits are set because this is
a valid occurrence when enumerating devices on a Port Multiplier.

It is system software’s responsibility to check the PxSERR register periodically to determine if the
interface is operating cleanly, and take appropriate actions (such as going down to Generation1 speed if
operating at a higher speed or notifying the user) when interface errors occur.

Note that when an error such as a bad CRC or an illegal length occurs, the HBA cannot trust the
incoming FIS to be correct. For example, the HBA may have thought the FIS was a D2H Register FIS,
but if the CRC is incorrect, it could be because the type specified in the FIS is incorrect.

To address this problem, the HBA shall not update its internal registers, nor update the FIS received area,
until it determines that a non-Data FIS it received was valid. If the HBA believes the FIS to be a Data FIS,
however, it may copy it to memory at the appropriate PRD location. This is because Data FISes may be
as long as 8KB. An HBA may set other error or diagnostic bits based on the FIS contents when there is a
CRC error; these bits may not be completely accurate due to the CRC error. It is possible that a fatal
error is generated due to a non-fatal CRC error. In this case, software should perform the normal
procedure to recover from a fatal error.

6.1.3 Port Multiplier Errors

When a Port Multiplier is connected, if a FIS is received from a device, where the PMP field does not
match what is expected, the HBA returns R_OK and sets PxIS.IPMS. The HBA shall discard the packet
and not update any registers or memory structures based on the FIS contents. In command-based
switching, this indicates that the only active PMP port was not properly returned. In FIS based switching,
this indicates that a PMP field was returned that is not in the list of active PMPs.

6.1.4 Taskfile Errors

When a FIS arrives that updates the taskfile, the HBA checks to see if PxTFD.STS.ERR is set. If it is,
and PxIE.TFEE is set, the HBA shall generate an interrupt and stop processing any more commands.

When a Set Device Bits FIS is received with the ERR bit set to ‘1’ in the Status field in normal operation,
the HBA updates the PxSACT register based on the SActive field of the SDB FIS and sets PxIS.TFES to
‘1’. When a Set Device Bits FIS is received with the ERR bit set to ‘1’ in the Status field and FIS-based
switching is enabled, the HBA updates the PxSACT register based on the SActive field of the SDB FIS,
sets PxIS.TFES to ‘1’, updates the PxFBS.DWE field to indicate the device with the error, and sets
PxFBS.SDE to ‘1’ to indicate a single device error.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 84

When a Register FIS or PIO Setup FIS indicates that the ERR bit should be set to ‘1’ in PxTFD.STS in
normal operation, the HBA sets PxIS.TFES to ‘1’ and halts. When a Register FIS or PIO Setup FIS
indicates that the ERR bit should be set to ‘1’ in PxTFD.STS and FIS-based switching is enabled, the
HBA sets PxIS.TFES to ‘1’, updates the PxFBS.DWE field to indicate the device with the error, and sets
PxFBS.SDE to ‘1’ to indicate a single device error.

6.1.5 Command List Overflow

Command list overflow is defined as software building a command table that has fewer total bytes than
the transaction given to the device. On device writes, the HBA will run out of data, and on reads, there
will be no room to put the data.

For an overflow on data read, either PIO or DMA, the HBA shall set PxIS.OFS, and if enabled via
PxIE.OFE and GHC.IE, generate an interrupt. When this condition occurs on data reads, the HBA shall
make a best effort to continue, however the HBA may not be able to recover without software
intervention. Overflow is a serious error, thus software should perform a fatal error recovery procedure to
ensure that the HBA is brought back to a known condition before continuing. For an overflow on writes,
the HBA may transmit HOLDs to the device since it does not have any data to satisfy the request size; a
COMRESET is required by software to clean up from this serious error. For an overflow on data writes
with DMA, the HBA does not know there is more data until it receives the next DMA Activate. When this
occurs, it may optionally set PxIS.OFS and attempt to terminate the transfer. However, this is a fatal
condition, and an HBA is allowed to hang on the transfer. For PIO writes, the HBA receives the PIO
Setup FIS and therefore knows the length, and therefore may optionally set PxIS.OFS. However, by not
satisfying the length, the transfer shall end in an error, and software must recover. Therefore setting
PxIS.OFS is optional for both DMA and PIO data write conditions. Detecting overflow and setting
PxIS.OFS on native command queuing commands is optional.

For FIS-based switching, overflow is treated as a single device error. In addition to setting PxIS.OFS on
this condition, the HBA updates the PxFBS.DWE field and sets PxFBS.SDE to ‘1’.

6.1.6 Command List Underflow

Command list underflow is defined as software building a command table that has more total bytes than
the transaction given to the device.

These requirements only apply for commands where underflow is a valid condition in a successful
operation (e.g. READ STREAM). For data writes, both PIO and DMA, the device shall detect an error
and end the transfer. These errors are most likely going to be fatal errors that will cause the port to be
restarted. For data reads, the HBA shall update its PRD byte count with the total number of bytes
received from the last FIS, and may be able to continue normally, but is not required to.

The HBA is not required to detect underflow conditions for native command queuing commands.

6.1.7 PIO Data Transfer Errors

In accordance with the Serial ATA Revision 2.6 specification, Data FISes prior to the final Data FIS must
be an integral number of Dwords. If the HBA receives an intermediate Data FIS transfer request that is
not an integral number of Dwords, the HBA shall set PxSERR.ERR.P to ‘1’, set PxIS.IFS to ‘1’ and stop
running until software restarts the port.

The HBA shall ensure that the size of the Data FIS received during a PIO command matches the size in
the Transfer Count field of the preceding PIO Setup FIS. If the Data FIS size does not match the Transfer
Count field in the preceding PIO Setup, the HBA shall respond with R_ERR to the Data FIS, set
PxSERR.ERR.P to ‘1’, set PxIS.IFS to ‘1’, and then stop running until software restarts the port.

6.1.8 SYNC Escape by device

The device should not SYNC Escape a FIS when no Port Multiplier is present. The only expected time
that a SYNC Escape by the device occurs is when a Port Multiplier is attached and the device targeted
has been removed or experienced an error condition on the physical link. In this case, an H2D FIS may
be SYNC Escaped by the Port Multiplier to indicate that the FIS could not be delivered.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

85

Whenever a SYNC Escape by the device occurs on a D2H FIS, the host sets the PxIS.IFS bit to ‘1’
marking that the condition is fatal. When a SYNC Escape occurs on an H2D Data FIS, the host sets the
PxIS.IFS bit to ‘1’ since the data transfer cannot be re-started without software intervention. When a
SYNC Escape occurs on an H2D non-Data FIS, the HBA acts as follows:

 FIS-based switching disabled: Set PxIS.IFS to ‘1’ to mark the condition as fatal.

 FIS-based switching enabled: Set PxIS.INFS to ‘1’ to signal a non-fatal error. Update
PxFBS.DWE to the device that the error occurred for. Set PxFBS.SDE to ‘1’ to indicate a single
device error.

6.1.9 Device responds to FIS with R_ERR

The device responds to a FIS with R_ERR for various error conditions.

When an R_ERR is received on an H2D Data FIS in normal operation, the HBA sets PxIS.IFS to ‘1’ and
halts operation. When responding with R_ERR to an H2D Data FIS, the device may send a D2H Register
FIS to indicate the reason for the error. The host should allow posting of non-Data FISes before
PxCMD.ST is cleared to ‘0’. After PxCMD.ST is cleared to ‘0’, no FISes should be posted for previous
command sequences.

When an R_ERR is received on an H2D Data FIS and FIS-based switching is enabled, the HBA sets
appropriate PxSERR bits and continues (does not halt operation). The affected device will send a D2H
Register FIS to mark that an error has occurred. As part of receiving the D2H Register FIS, a single
device error is declared for that device. By allowing the HBA to continue until the D2H Register FIS is
received, transactions continue normally to the other devices attached to the Port Multiplier.

When an R_ERR is received on an H2D non-Data FIS, the HBA sets the PxIS.INFS bit and retries
transmission of the impacted H2D non-Data FIS.

6.1.10 CRC error in received FIS

When a CRC error occurs on a D2H Data FIS, the HBA sets PxIS.IFS to ‘1’. After a CRC error on a D2H
Data FIS, the device may send a D2H Register FIS to indicate the reason for the error. The host should
allow posting of non-Data FISes before PxCMD.ST is cleared to ‘0’.

When a CRC error occurs on a D2H non-Data FIS, the HBA sets PxIS.INFS to ‘1’. The device is
expected to retry the non-Data FIS transfer.

6.1.11 D2H FIS received without active command slot

When a DMA Setup FIS is received without an active command slot for the device, the HBA sets
PxIS.IFS to ‘1’. For all other D2H FISes received without an active command slot for the device, the HBA
drops the FIS quietly (not setting any error bits), does not post the FIS, and does not make any register
updates based on the FIS.

DMA Setup is treated as a fatal error since these FISes could be due to rogue devices trying to gain
access to memory space that does not belong to that device. For other D2H FISes, these may be
received due to lingering FISes on the link after error handling and thus they are dropped quietly to avoid
creating additional error handling situations.

6.2 Error Recovery

6.2.1 HBA Aborting a Transfer

When the HBA detects an error that it cannot recover from, it may need to end the transfer on the SATA
interface.

To do this, the HBA asserts SYNC Escape to stop the bad FIS, and when the device is quiescent, returns
to idle. The SATA device should send a D2H Register FIS at this point, with the ERR bit set to indicate
an error in the transfer.

When aborting a transfer, the HBA does not wait for the D2H Register FIS before proceeding with error
recovery (such as setting interrupt status bits and generating interrupts). This is because a device may
be in a hung condition and cannot generate the D2H Register FIS.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 86

6.2.2 Software Error Recovery

When an interrupt is generated due to an error condition, software will attempt to recover. Fatal errors
(signified by the setting of PxIS.HBFS, PxIS.HBDS, PxIS.IFS, or PxIS.TFES) will cause the HBA to enter
the ERR:Fatal state, and clear PxCMD.CR. In this state, the HBA shall not issue any new commands nor
acknowledge DMA Setup FISes to process any native command queuing commands. To recover, the
port must be restarted; the port is restarted by clearing PxCMD.ST to ‘0’ and then setting PxCMD.ST to
‘1’. For non-fatal errors (signified by the setting of PxIS.INFS or PxIS.OFS) the HBA continues to operate.

If the transfer was aborted (see section 6.2.1), the device is expected to send a D2H Register FIS with
PxTFD.STS.ERR set to ‘1’ and both PxTFD.STS.BSY and PxTFD.STS.DRQ cleared to ‘0’. Under this
scenario, system software knows that the device is in a stable state and transfers may be restarted
without issuing a COMRESET to the device.

For fatal errors, software must determine which commands were not processed and either re-issue them
or notify higher level software that the command failed. The steps involved are listed in the following
sections.

To detect an error that requires software recovery actions to be performed, software should check
whether any of the following status bits are set on an interrupt: PxIS.HBFS, PxIS.HBDS, PxIS.IFS, and
PxIS.TFES. If any of these bits are set, software should perform the appropriate error recovery actions
based on whether non-queued commands were being issued or native command queuing commands
were being issued.

6.2.2.1 Non-Queued Error Recovery

The flow for system software to recover from an error when non-queued commands are issued is as
follows:

 Reads PxCI to see which commands are still outstanding

 Reads PxCMD.CCS to determine the slot that the HBA was processing when the error
occurred

 Clears PxCMD.ST to ‘0’ to reset the PxCI register, waits for PxCMD.CR to clear to ‘0’

 Clears any error bits in PxSERR to enable capturing new errors.

 Clears status bits in PxIS as appropriate

 If PxTFD.STS.BSY or PxTFD.STS.DRQ is set to ‘1’, issue a COMRESET to the device to put
it in an idle state

 Sets PxCMD.ST to ‘1’ to enable issuing new commands

 Optionally issue a command to gather information about the error, for example READ LOG
EXT, if software did not have to perform a reset (COMRESET or software reset) as part of
the error recovery.

Software then either completes the command that had the error and commands still outstanding with
error to higher level software, or re-issues these commands to the device.

6.2.2.2 Native Command Queuing Error Recovery

The flow for system software to recover from an error when native command queuing commands are
issued is as follows:

 Reads PxSACT to see which commands have not yet completed

 Clears PxCMD.ST to ‘0’ to reset the PxCI and PxSACT registers, waits for PxCMD.CR to
clear to ‘0’

 Clears any error bits in PxSERR to enable capturing new errors.

 Clears status bits in PxIS as appropriate

 If PxTFD.STS.BSY or PxTFD.STS.DRQ is set to ‘1’, issue a COMRESET to the device to put
it in an idle state

 Sets PxCMD.ST to ‘1’ to enable issuing new commands

 Issue READ LOG EXT to determine the cause of the error condition if software did not have
to perform a reset (COMRESET or software reset) as part of the error recovery

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

87

Software then either completes commands that did not finish with error to higher level software, or re-
issues them to the device.

6.2.2.3 Recovery of Unsolicited COMINIT

An unsolicited COMINIT is a COMINIT that is not received as a consequence of issuing a COMRESET to
the device (refer to Serial ATA Revision 2.6). If the HBA receives an unsolicited COMINIT during normal
operation, the HBA shall perform the following actions:

 Respond to the device with a COMRESET

 Halt execution until PxIS.PCS is cleared to ‘0’ by software

To detect this condition, software should check whether PxIS.PCS is set to ‘1’ on an interrupt. The HBA
cannot guarantee that a device received a COMRESET because a COMINIT may appear to be solicited
to the HBA if it happens to occur closely to an issued COMRESET. Therefore, when software detects
that PxIS.PCS is set, software should first issue a COMRESET to ensure that the device receives a
COMRESET. Then software should perform the appropriate actions to clear PxIS.PCS to ‘0’. To recover,
software should perform error recovery actions for a fatal error condition (including restarting the
controller). Then software should perform a re-enumeration to check whether a new device has been
inserted.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 88

7 Hot Plug Operation

7.1 Platforms that Support Cold Presence Detect

For platforms that support cold-presence detect, additional logic is required on the board that implements
the SATA ports. How this logic is implemented is beyond the scope of this specification.

7.1.1 Device Hot Unplugged

When a powered-down device is removed, the HBA shall be notified through an external pin. The HBA
set PxIS.CPDS to indicate the device changed state. If PxIE.CPDE and GHC.IE are set, the HBA shall
also generate an interrupt. Software should then check PxCMD.CPS to determine whether a device is
present.

7.1.2 Device Hot Plugged

When a device is added, the HBA shall be notified through an external pin. The HBA shall report that the
device status changed by setting PxIS.CPDS to indicate the device changed state. If PxIE.CPDE and
GHC.IE are set, the HBA shall also generate an interrupt. Software should then check PxCMD.CPS to
determine whether a device is present.

7.2 Platforms that Support Mechanical Presence Switches.

For platforms that support mechanical presence switches, additional logic is required on the board that
implements the SATA ports. How this logic is implemented is beyond the scope of this specification. The
net result of the logic, though, is that whenever the logic changes state, a high logic level will be sent to
the HBA, which shall set PxIS.DMPS.

Setting of this bit in and of itself does not imply a hot plug or unplug event, but is a notification to software
that the device state may have changed.

7.3 Native Hot Plug Support

The HBA must support native hot plug. Hot plug insertion is detected by reception of a COMINIT signal
from the device. Hot plug removal is detected by a change in the state of the HBA’s internal PhyRdy
signal.

On reception of an unsolicited COMINIT, the HBA shall generate a COMRESET. If the COMINIT is in
response to a COMRESET, then the HBA shall begin the normal communication negotiation sequence as
outlined in the Serial ATA Revision 2.6 specification. When a COMRESET is sent to the device the
PxSSTS.DET field shall be cleared to 0h. When a COMINIT is received, the PxSSTS.DET field shall be
set to 1h. When the communication negotiation sequence is complete and PhyRdy is true the
PxSSTS.DET field shall be set to 3h.

The HBA shall set the PxSERR.DIAG.X bit to ‘1’ when a COMINIT is received from the device. Hot plug
insertions are detected via the PxIS.PCS bit that directly reflects the PxSERR.DIAG.X bit. The HBA shall
set the PxSERR.DIAG.N bit to ‘1’ when the HBA’s internal PhyRdy signal changes state. Hot plug
removals are detected via the PxIS.PRCS bit that directly reflects the PxSERR.DIAG.N bit. Note that
PxSERR.DIAG.N is also set to ‘1’ on insertions and during interface power management entry/exit.

When PhyRdy transitions from ‘1’ to ‘0’, the HBA may update PxSSTS.DET to 1h since the reason for the
loss of communications is not fully known.

7.3.1 Hot Plug Removal Detection and Power Management Interaction (Informative)

PhyRdy changes state when a device is inserted, when a device is disconnected, and when the link
enters/exits a Partial or Slumber interface power management state. Thus, if interface power
management is enabled for a port, the PxSERR.DIAG.N bit may be set due to the link entering the Partial
or Slumber power management state, rather than due to a hot plug insertion or removal event.

To reliably get removal detection notification via the PxSERR.DIAG.N bit, interface power management
must be disabled for the port. When the Serial ATA link is in a Partial or Slumber interface power

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

89

management state, device removals cannot be detected and reported via the PxSERR.DIAG.N bit
because there is no active signal on the link.

7.3.1.1 Software Flow for Hot Plug Removal Detection (Informative)

To reliably detect hot plug removals, software must disable interface power management. Software
should perform the following initialization on a port after a device is attached:

 Set PxSCTL.IPM to 3h to disable interface power management state transitions.

 Set PxCMD.ALPE to ‘0’ to disable aggressive power management.

 Ensure PxIE.PRCE is set to ‘1’ to enable interrupts on hot plug removals.

 Disable device initiated interface power management by issuing the appropriate SET FEATURES
command.

During normal operation, software should check PxIS.PRCS to determine if a hot plug removal has
occurred.

7.3.1.2 Software Flow for Power Management (Informative)

To utilize power management on a port and avoid spurious interrupts due to PhyRdy transitions, software
should disable the interrupt for hot plug removal. Software should perform the following initialization on a
port after a device is attached:

 Clear PxIE.PRCE to ‘0’ to disable interrupts on PhyRdy state changes.

 Set PxSCTL.IPM to 0h to enable interface power management state transitions.

 Set PxCMD.ALPE and PxCMD.ASP appropriately based on the aggressive power management
policy.

During normal operation, software should check that PxSSTS.DET is set to 3h to ensure that a hot plug
removal has not occurred.

7.4 Interaction of the Command List and Port Change Status

Software may have one or several commands in the command list at the time a device is unplugged. A
new device may also be inserted before software has had an opportunity to see the change.

When a hot plug event occurs, software will normally stop outstanding commands to the device that was
removed and begin issuing commands to the new device. To accomplish this, an HBA shall stop
transferring data, return to an idle condition, and clear PxCMD.CR whenever PxIS.PCS is set. This
allows software to see what commands are outstanding by checking PxCI, PxSACT, and PxCMD.CCS.
Once software has determined which commands need to be re-issued, it shall clear PxCMD.ST and
restart the controller by setting PxCMD.ST and taking any necessary actions to enable the SATA device.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 90

8 Power Management Operation

8.1 Introduction

This section covers power management of the HBA and the Serial ATA interface. This specification does
not cover any power management that a Serial ATA device may do internally that is transparent to the
interface.

8.2 Power State Mappings

The PCI specification defines power management states for devices, which shall be applied to the HBA.
They are:

 D0 – Working (required)

 D1 – Not defined for storage HBAs

 D2 – Not defined for storage HBAs

 D3 – Very deep sleep (required). This state is split into two sub-states, D3HOT (can respond
to PCI configuration accesses) and D3COLD (cannot respond to PCI configuration accesses).
These two sub-states are considered the same, where D3HOT has VCC, but D3COLD does not.
PxCMD.ST must be cleared to ‘0’ before entering the D3 power state.

Serial ATA devices may also have multiple power states. Each of these device states are subsets of the
HBA’s D0 state. They are:

 D0 – Device is working and instantly available.

 D1 – Device enters when it receives an IDLE IMMEDIATE command. Exit latency from this
state is in seconds.

 D2 – Device enters when it receives a STANDBY (IMMEDIATE) command. Exit latency
from this state is in seconds.

 D3 – Device enters when it receives a SLEEP command. Exit latency from this state is in
seconds.

Finally, Serial ATA defines three Phy layer (or interface) power states. They are:

 Phy Ready – Phy logic and PLL are both on and active

 Partial – Phy logic is powered, but in a reduced state. Exit latency is no longer than 10µs

 Slumber – Phy logic is powered, but in a reduced state. Exit latency can be up to 10ms.

Since these states have much lower exit latency than the D1, D2, and D3 states, AHCI defines these
states as sub-states of the device D0 state.

The following picture gives a hierarchical view of power states of Serial ATA.

Figure 19: Power State Hierarchy

HBA = D3

Device = D3

HBA = D0

Device = D0

PHY =

Ready

Device = D3Device = D1

PHY =

Slumber
(see note)

PHY =

Slumber

PHY =

Partial

PHY =

Slumber
(see note)

PHY =

Slumber
(see note)

Resume Latency

Power

Note: The Phy is not required to be in a Slumber state when the device is in a D1, D2 or D3 state, nor is it
required to be in a Slumber state when the HBA is in a D3 state. While this may be the likely condition of
the interface when the devices connected to the interface are in a low power state, it is not a requirement,
and the interface shall break out of these states on a power management event.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

91

8.3 Power State Transitions

8.3.1 Interface Power Management

The Serial ATA Revision 2.6 specification defines two lower power interface power management states,
Partial and Slumber, in order to save power on the Serial ATA link in power sensitive systems. The
Partial and Slumber interface power management states can be initiated by software, the HBA itself, or by
the device. The interface power management state is negotiated between the host and the device on the
interface using Serial ATA primitives. Any request can be accepted (using the PMACK primitive) or
rejected (using PMNACK primitives) based upon current conditions and settings in the device and HBA.
The current interface power management state is reflected to software in PxSSTS.IPM.

8.3.1.1 Device Initiated

By default, a device that supports initiating interface power management states has the capability
disabled. To enable this feature, the appropriate SET FEATURES command may be issued to the
device. The HBA shall respond to device initiated power management requests as specified by
PxSCTL.IPM. A request from the device to enter an interface power management state may be rejected
by the HBA if the HBA needs to transmit a FIS to the device.

8.3.1.2 System Software Initiated

PxCMD.ICC is used by system software to initiate interface power management state transitions. The
request to transition to a different interface power management state shall only be acted on by the HBA if
the Link layer is currently in the L_IDLE state. If the HBA’s Link layer is not in the L_IDLE state when the
PxCMD.ICC field is written, the request shall be ignored. The HBA shall not perform a transition directly
from Partial to Slumber or from Slumber to Partial based on a new value being written to PxCMD.ICC. If
the link is currently in a Partial or Slumber interface power management state, it is software’s
responsibility to bring the link to the active state before requesting a transition to a different interface
power management state. The time from the request written to PxCMD.ICC until the link is active is
bounded by the maximum recovery times from Partial or Slumber as outlined in the Serial ATA Revision
2.6 specification.

8.3.1.3 HBA Initiated

The HBA may implement aggressive power management, as indicated in CAP.SALP. Aggressive power
management allows the HBA to initiate an interface power management state as soon as there are no
commands outstanding to the device. This enables immediate entry into the low power interface state
without waiting for software in power sensitive systems. The PxCMD.ALPE bit defines whether the
feature is enabled and the PxCMD.ASP field controls whether Partial or Slumber is initiated by the HBA
when enabled.

When PxCMD.ALPE is set to ‘1’, if the HBA recognizes that there are no commands to process, the HBA
shall initiate a transition to Partial or Slumber interface power management state based upon the setting
of PxCMD.ASP. The HBA recognizes no commands to transmit as either:

 PxSACT is set to 0h, and the HBA updates PxCI from a non-zero value to 0h.

 PxCI is set to 0h, and a Set Device Bits FIS is received that updates PxSACT from a non-
zero value to 0h.

If the PxSACT and PxCI registers are both cleared to 0h, and the interface is in an active state, the HBA
shall not initiate placing the interface into a lower power state, unless PxCMD.ICC is written with an
appropriate value.

Before performing a FIS transmission, the HBA must ensure the link is in the active state. If the link is in
the Partial or Slumber interface power management state, a COMWAKE must be issued, and the HBA
must wait until the link is active before proceeding with transmission of the FIS.

8.3.1.4 Software Requirements and Precedence

Software must check CAP.SSC (Slumber capable) and CAP.PSC (Partial capable) to determine if the
HBA supports interface power management transitions as an initiator or a target. If an interface power
management state is not supported, then software shall not write the PxCMD.ICC field nor set the

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 92

aggressive power management capability to initiate a transition to that state. Software must set the
PxSCTL.IPM field to disable transition to any unsupported interface power management state. If
CAP.SSC or CAP.PSC is cleared to ‘0’, software should disable device-initiated power management by
issuing the appropriate SET FEATURES command to the device.

The Serial ATA Revision 2.6 specification defines the proper behavior of the link layer when a host
initiated and device initiated power state transition occur concurrently. HBA initiated interface power
management requests are higher priority than software initiated requests. Thus if the HBA and software
request transitions to different states at the same time, the HBA’s request shall take precedence over the
software request.

8.3.2 Device D1, D2, and D3 States

The D1, D2, and D3 device states are entered when system software has determined that no commands
will be sent to the device for some time. To enter these states, software may perform two actions. The
first is to issue a command to the device to enter the low power state (IDLE IMMEDIATE for D1,
STANDBY (IMMEDIATE) for D2, SLEEP for D3), and the second step is to put the interface into a
Slumber power management state (by setting PxCMD.ICC to 6h).

Note: It is recommended that the device initiate a Slumber power management state when it receives a
command to enter the D1, D2, or D3 state.

8.3.3 HBA D3 state

After the interface and device have been put into a low power state, the HBA may be put into a low power
state. This is performed via the PCI power management registers in configuration space. AHCI only
supports the D0 and D3 device power states.

As per the PCI Power Management Specification version 1.2, the two D3 states defined are D3hot and
D3cold. The defining difference between these two states is the absence (D3cold) or presence (D3hot) of
Vcc. The two D0 states defined are D0unitialized and D0initialized. Functions in D3hot can be
transitioned to the D0 state via software by writing to the function’s PMCSR register. Functions in the
D3cold state can only be transitioned to a D0uninitialized state by reapplying Vcc and asserting Bus
Segment Reset (RST#) to the HBA. Functions in the D3hot state can be transitioned to the
D0uninitialized state or the D0initialized state; device’s designed to the PCI Bus Power Management
Interface Specification Revision 1.2 are allowed to support either D3hot->D0initialized or D3hot →
D0uninitialized transitions. PCI Bus Power Management Interface Specification Revision 1.1 does not
have this flexibility – only D3hot/cold → D0uninitialized is supported.

There are several important aspects to note when using PCI power management.

 When the power state is D3, only accesses to configuration space are allowed. Any attempt to
access the register memory space must result in master abort.

 When the power state is D3, no interrupts may be generated, even if they are enabled. If an
interrupt status bit is pending when the controller transitions to D0, an interrupt may be
generated.

 When the HBA transitions from D3cold to D0, system software (BIOS and/or device specific
drivers) is required to restore all registers needed to place the HBA in a usable state. This is
required since a D3cold (Vcc removed) to D0 will place the HBA in an uninitialized state.
Typically, if the system BIOS participates in the resume path (i.e. resume from system standby,
hibernate, power-on, etc) where the HBA is placed in a D3cold state, then the BIOS will be
expected to restore/program registers residing in the HBA’s PCI configuration space (for PCI add-
in cards, this is limited to bytes 00 – 63 in PCI configuration space) as well as those registers in
the HBA’s memory mapped IO space that are specified as “Implementation Specific” (not
applicable for PCI add-in cards). For those registers not restored/programmed by the BIOS during
D3cold → D0 transitions (i.e. bytes 64 – 255 in PCI configuration space, HBA implementation
specific, etc) it is the device specific OS driver’s responsibility to restore the HBA to a working
(D0initialized) state.

 When the HBA transitions from D3hot to D0initialized, no specific re-initialization by the system
BIOS or device is required

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

93

 When the HBA transitions from D3hot to D0unitialized, then re-initialization of the device is
performed exclusively by the device specific OS driver(s) – no system BIOS assistance is
required.

Software must disable interrupts (GHC.IE must be cleared to ‘0’) prior to requesting a transition of the
HBA to the D3 state. This precaution by software avoids an interrupt storm if an interrupt occurs during
the transition to the D3 state.

PxCMD.ST must be cleared to ‘0’ before entry into the D3 power state.

8.4 PME

When the HBA is in the D3 state, it may optionally wake based on a change in the device state.

PME must be generated when the HBA is in the D3 state under the following conditions:

 PxIS.PCS is set to ‘1’ due to a native hot plug insertion

 PxIS.DMPS set, indicating a mechanical presence switch has been opened or closed

 PxIS.CPDS set, indicating cold presence detect state change

 Set Device Bits FIS received on the interface with the ‘I’ bit set to ‘1’. The HBA may
require that the Notification (‘N’) bit also be set to ‘1’ in the Set Device Bits FIS; this is
implementation specific.

If any of these bits are set, regardless of the setting of the enables in PxIE and GHC.IE, the HBA shall
generate PME#.

8.5 Device Sleep (DEVSLP) Feature

Device Sleep is an optional feature as described in the Serial ATA Technical Proposal TP 038
specification. This feature enables an HBA and SATA storage device to enter the DevSleep interface
state, enabling lower power SATA-based systems. For a system to support Device Sleep, the device, the
HBA and the system BIOS/driver all need to support Device Sleep.

In systems that support Device Sleep, an HBA may individually initiate Device Sleep to those devices that
support the capability. Entry to the DevSleep interface state may be accomplished autonomously by the
HBA via the aggressive Device Sleep mechanism or through software utilizing the PxCMD.ICC field
(similar to how Partial and Slumber are managed). Device Sleep is never initiated by the device.

Software shall check CAP2.SDS to determine if the HBA supports the Device Sleep feature. Before
software programs the HBA to assert the DEVSLP signal (either autonomously or through software) on a
Device Sleep capable port (PxDEVSLP.DSP = ‘1’), software shall first determine if the attached device
supports the Device Sleep feature. Only ATA devices support Device Sleep. Software shall set
PxDEVSLP.MDAT to the minimum duration the HBA must assert the DEVSLP signal and
PxDEVSLP.DETO to the maximum duration from DEVSLP signal de-assertion until the device is ready to
start OOB negotiations based on the values reported by the device. Refer to the Serial ATA Technical
Proposal TP 038 for further details.

The current state of an interface’s DevSleep state is reflected to software in PxSSTS.IPM.

Note: Native hot plug shall not be used in combination with DEVSLP, as the host is not aware of unplug
events during the DEVSLP state.

8.5.1 Aggressive Device Sleep Management

The HBA may implement aggressive Device Sleep management, as indicated in CAP2.SADM.
Aggressive Device Sleep enables the HBA to assert the DEVSLP signal as soon as there are no
commands outstanding to the device and the port specific Device Sleep idle timer has expired. This
enables autonomous entry into the DevSleep interface state without waiting for software in power
sensitive systems. The PxDEVSLP.ADSE bit defines whether the feature is enabled and the combination
of PxDEVSLP.DITO and PxDEVSLP.DM values controls the amount of hysteresis to apply before the
HBA asserts the DEVSLP signal.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 94

When PxDEVSLP.ADSE is set to ‘1’ and CAP2.DESO is cleared to ‘0’, if the HBA recognizes that there
are no commands to process and the port specific Device Sleep idle timer has expired, the HBA shall
assert the DEVSLP signal. When PxDEVSLP.ADSE is set to ‘1’ and CAP2.DESO is set to ‘1’, if the HBA
recognizes that there are no commands to process, the interface is in Slumber (PxSSTS.IPM = ‘6h’), and
the port specific Device Sleep idle timer has expired, the HBA shall assert the DEVSLP signal. The HBA
begins decrementing the Device Sleep idle timer anytime the HBA has no commands to process. The
HBA recognizes no commands to process as either:

 PxSACT is set to 0h, and the HBA updates PxCI from a non-zero value to 0h.

 PxCI is set to 0h, and a Set Device Bits FIS is received that updates PxSACT from a non-
zero value to 0h.

There is no requirement that the interface be in the Partial or Slumber state prior to assertion of DEVSLP
signal unless CAP2.DESO is set to ‘1’; The DEVSLP signal may be asserted by the HBA at anytime
provided that the link is idle (or in low power state) and no commands are outstanding. If CAP2.DESO is
set to ‘1’, The DEVSLP signal may only be asserted by the HBA if the interface is in Slumber
(PxSSTS.IPM = ‘6h’).

Software shall check CAP2.SDS to determine if the HBA supports the Device Sleep feature and
CAP2.SADM to determine if the HBA supports the aggressive Device Sleep management feature. If the
HBA does not support Device Sleep or a port does not support Device Sleep, then software shall not
enable the aggressive Device Sleep management capability.

8.5.2 DEVSLP Idle Timeout

The Device Sleep Idle Timeout value (PxDEVSLP.DITO and PxDEVSLP.DM) is a port specific timeout
value used by the HBA for determining when to assert the DEVSLP signal. It provides a mechanism for
the HBA to apply a programmable amount of hysteresis so as to prevent the HBA from asserting the
DEVSLP signal too quickly which may result in undesirable latencies. When PxDEVSLP.ADSE is set to
‘1’, if the HBA recognizes that there are no commands to process, then the HBA re-loads the port specific
idle timer with the value specified in PxDEVSLP.DITO and starts decrementing the idle timer until it
reaches ‘0’ or until PxCI set to a non-zero value. The HBA recognizes that there are no commands to
process as either:

 PxSACT is set to 0h, and the HBA updates PxCI from a non-zero value to 0h.

 PxCI is set to 0h, and a Set Device Bits FIS is received that updates PxSACT from non-zero
value to 0h.

Note:

 The HBA does not use the idle timer when software initiates Device Sleep via PxCMD.ICC; The
HBA is allowed to transition the interface from idle to Partial/Slumber, Partial to Slumber, or
Partial/Slumber to idle during the idle period prior to asserting DEVSLP signal (if permitted via
PxSCTL.IPM programming).

8.5.3 Software Initiated DEVSLP

Software shall check CAP2.SDS to determine if the HBA supports the Device Sleep feature. If the HBA
does not support Device Sleep or a port does not support Device Sleep, then software shall not write a
value of 8h to the PxCMD.ICC field nor shall it set the aggressive Device Sleep management capability.

When software is managing the assertion of the DEVSLP signal (aggressive Device Sleep is disabled),
software may follow a flow similar to that required by a HW managed scheme:

1. Software determines that the interface is idle (PxSACT is set to 0h and PxCI is set to 0h).

2. Software may initialize a timer using OS specific APIs – the timeout value is software
implementation specific. PxDEVSLP

3. Upon expiration of the OS based timer, software may assert DEVSLP by setting PxCMD.ICC to
8h; if CAP2.DESO is set to ‘1’, software should determine that the interface is in Slumber

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

95

(PxSSTS.IPM = ‘6h’). If the interface is not in slumber and CAP2.DESO is set to ‘1’, the HBA
shall ignore software setting PxCMD.ICC to 8h.

Note: This is one example of how software may enter the DevSleep interface state.

8.5.4 Exiting from DevSleep

Once placed into DevSleep, the interface shall remain in this state until it is placed into the active state as
a result of any of the following actions:

 Software sets PxCMD.ICC = 1h.

 Software sets PxCI to a non-zero value.

 Software initiates a COMRESET.

 An HBA reset occurs.

Note: It is recommended that software explicitly set PxCMD.ICC to ‘1h’ and wait PxDEVSLP.DETO
+ PxDEVSLP.MDAT + 1ms before initiating a COMRESET. If software initiates a COMRESET to exit
from the DevSleep interface state, PxSCTL.DET shall be set to ‘1h’ (at a minimum) for the amount of
time specified by PxDEVSLP.DETO + PxDEVSLP.MDAT + 1ms. If software places the port in Offline
mode while in the DevSleep interface state, PxSCTL.DET shall be set to ‘4h’ (at a minimum) for the
amount of time specified by PxDEVSLP.DETO + PxDEVSLP.MDAT + 1ms.

When the HBA exits the DevSleep interface power state due to software setting PxCI to a non-zero value
and:

a) the interface was not in Partial or Slumber prior to entering the DevSleep interface power state or;

b) the device does not support exiting DevSleep with COMWAKE; resulting in a COMINIT;

this shall result in a transition to StartComm (COMRESET) either by the HBA or software response to
PxIS.PCS being set to ‘1’. Software should take appropriate action to retry the command(s) that originally
resulted in setting PxCI to a non-zero value.

8.5.5 Device Sleep and Automatic Partial to Slumber Transition Support

Automatic Partial to Slumber Transitions may be supported with Device Sleep by the host and/or the
device if CAP2.DESO is cleared to ‘0’. If CAP2.DESO = ‘1’ then HBA based Automatic Partial to Slumber
Transitions shall be enabled (PxCMD.APSTE = ‘1’), if device based Automatic Partial to Slumber
Transitions are enabled. Software should not enable Automatic Partial to Slumber Transitions on the
device if CAP2.DESO = ‘1’ and Automatic Partial to Slumber Transitions on the HBA are not enabled.

8.5.6 Device Sleep and Mechanical Interlock Switch Support

If the DEVSLP signal is asserted on a port that provides mechanical interlock switch support, it shall be
software’s responsibility to de-assert and/or disable the DEVSLP signal when it has been determined that
the mechanical interlock switch has been opened:

 When the HBA is autonomously managing Device Sleep (CAP2.SADM is set to ‘1’ and
PxDEVSLP.ADSE is set to ‘1’) on the port, software shall clear the port specific aggressive
DEVSLP enable bit (PxDEVSLP.ADSE) to ‘0’ and shall write a value of ‘1h’ to PxCMD.ICC to de-
assert the DEVSLP signal on the port..

 When software is managing Device Sleep on the port (PxDEVSLP.ADSE is cleared to ‘0’),
software shall write a value of ‘1h’ to PxCMD.ICC to de-assert the DEVSLP signal on the port.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 96

9 Port Multiplier Support

Port Multiplier support for HBAs is optional, and its support is indicated to system software via CAP.SPM.
If Port Multipliers are supported in the HBA, it must support command-based switching. This section
describes the hardware and software differences necessary to make a Port Multiplier work.

9.1 Command Based Switching

In this mode of operation, a communication path is opened between the HBA and a device through the
Port Multiplier. Since Port Multipliers are meant to be simple, the burden of making a connection is on
AHCI software, to ensure that multiple commands are not outstanding to different devices behind the Port
Multiplier.

9.1.1 Non-Queued Operation

When running non-queued commands, the command list may be filled with any combination of ports, and
each command list entry can target a different port. There is no fixed relationship between number of
commands allocated to the device and the number of devices behind a Port Multiplier. For example, 29
commands could be allocated to the device behind PM port #0,and 3 commands for the remaining
devices, if that is desired by system software.

Since the commands are non-queued, the HBA shall execute each command entry in its entirety before
moving to the next entry in the command list, which may include a command to a different port.

This places special burden on system software for building commands. Since the HBA operates in order
in its command list, system software should not fill the list in sequential order with commands to a single
device; otherwise another device may get starved. Take the following example:

 4 devices attached to a PM behind a port

 The operating system presents several commands
o 4 to the device behind PM port #0
o 2 to the device behind PM port #1
o 1 to the device behind PM port #2

If the AHCI software placed these commands in sequential order, starting at command slot 0, the list
would look as follows:

 Slot #0: PM Port #0, Command 1

 Slot #1: PM Port #0, Command 2

 Slot #2: PM Port #0, Command 3

 Slot #3: PM Port #0, Command 4

 Slot #4: PM Port #1, Command 1

 Slot #5: PM Port #1, Command 2

 Slot #6: PM Port #2, Command 1

This would cause the device behind port #2 to not execute its command for a very long time. In the worst
case scenario, 31 commands to other devices behind different PM ports may execute before this
command is allowed to execute.

A better placement of commands to result in fairer execution would be as follows:

 Slot #0: PM Port #0, Command 1

 Slot #1: PM Port #1, Command 1

 Slot #2: PM Port #2, Command 1

 Slot #8: PM Port #0, Command 2

 Slot #9: PM Port #1, Command 2

 Slot #16: PM Port #0, Command 3

 Slot #24: PM Port #0, Command 4

Mapping commands in this fashion helps ensure that the device behind PM port #2 has a fairer chance of
executing. The above algorithm results in round-robin execution of commands. Many algorithms for
fairness exist, and their implementations are beyond the scope of this specification.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

97

In order to find the best slot for placing the next command, software should use PxCMD.CCS to find the
current slot the HBA is executing, and place the command in an appropriate slot for the fairness algorithm
that is desired.

9.1.2 Queued Operation

Since queued commands result in two different operations (command issue, clear of BSY, then data
transfer), if commands were sent to different ports, the Port Multiplier may issue FISes back to the HBA in
an interleaved manner from different ports. This will break an HBA that only supports command-based
switching. Therefore, when executing native command queuing commands, system software must only
add commands to the command list that target a single port behind the Port Multiplier, wait for the
commands to finish (PxSACT bits all cleared), then add commands for a different port. Additionally, the
tags used must match the command slot entries.

9.2 Port Multiplier Enumeration

In order to enumerate a Port Multiplier, a software reset is issued to port 0Fh (control port) on the Port
Multiplier. If the signature returned corresponds to a Port Multiplier, then a Port Multiplier is attached. If
the signature returned corresponds to another device type, then a Port Multiplier is not attached.

To reliably enumerate the Port Multiplier, regardless of the presence of a device on Port Multiplier device
port 0, the PxCMD.CLO (command list override) bit should be used if this feature is supported by the HBA
(indicated by CAP.SCLO being set to ‘1’). Software should ensure that the PxCMD.ST bit is ‘0’. Then
software should construct the two Register FISes required for a software reset in the command list, where
the PM Port field value in the Register FIS is set to 0Fh. After constructing the FISes in the command list,
software should set PxCMD.CLO to ‘1’ to force the BSY and DRQ bits in the Status register to be cleared.
Then software should set the PxCMD.ST bit to ‘1’ and set appropriate PxCI bits in order to begin
execution of the software reset command.

If the CAP.SCLO bit is cleared to ‘0’, a Port Multiplier can only be enumerated after a device on Port
Multiplier device port 0 sends a Register FIS to the host that clears PxTFD.STS.BSY and
PxTFD.STS.DRQ to ‘0’.

9.3 FIS-based Switching

FIS-based switching requires the HBA to keep track of additional device specific context within each HBA
port. The HBA must be able to issue commands to a device while there are still commands outstanding
to other devices that are connected to the same host port through the Port Multiplier. The HBA must be
able to switch DMA context on the fly; e.g. a Data FIS is received from target X, followed by a Data FIS
from target X+1. The next sections outline unique portions of FIS-based switching that are different from
normal operation.

9.3.1 Configuration

To enable use of FIS-based switching, software shall set the PxFBS.EN bit to ‘1’ while PxCMD.ST is
cleared to ‘0’. The host shall ensure that the requirements for setting PxCMD.ST to ‘1’ (listed in section
10.3.1) are met prior to setting PxFBS.EN to ‘1’. At some later point when software is ready to issue
commands to the device, software will set the PxCMD.ST bit to ‘1’ and then begin issuing commands to
the device(s).

To disable use of FIS-based switching, software shall clear the PxCMD.ST bit to ‘0’ and subsequently
clear the PxFBS.EN bit to ‘0’. This sequence ensures that the port is in a quiescent state prior to
disabling use of FIS-based switching.

9.3.1.1 PxFBS Control Register Details

9.3.1.1.1 Enable

When FIS-based switching is enabled, the hardware shall maintain a distinct BSY/DRQ bit for up to 16
devices. These bits are distinguished in the state machine as the pBsy and pDrq arrays. Hardware shall
fetch commands in such a way as to try to ensure commands are issued to all devices that have
BSY/DRQ cleared to ‘0’ and have commands in the command list. Instances of the BSY/DRQ bits are
updated based on the Port Multiplier port field in Device to Host FISes.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 98

Note that hardware does not need to maintain a distinct ERR bit for each device. Only one device may
have its PxTFD.STS.ERR bit set at a time since the hardware shall stop when an error condition occurs.

When FIS-based switching is disabled, the hardware shall maintain a single instance of the
BSY/DRQ/ERR bits and shall not distinguish setting/clearing these bits based on Port Multiplier port value
in a Device to Host FIS.

9.3.1.1.2 Device Error Clear

Device Error Clear is used when hardware signals a single device error has occurred by setting
PxFBS.SDE to ‘1’. If PxFBS.SDE is cleared to ‘0’, then software setting PxFBS.DEC to ‘1’ has
indeterminate results. When software sets PxFBS.DEC to ‘1’, hardware shall take the following actions
for PM port X (the value in PxFBS.DWE).

 Clear all PxCI and PxSACT bits that correspond to commands for PM port X

 Clear all internal state that corresponds to commands for PM port X

 Clear pBsy[X] and pDrq[X] to ‘0’

Note that hardware shall not modify error bits set in PxIS; it is up to software to clear these bits
appropriately.

After completing error recovery actions and clearing the register bits noted, hardware shall clear
PxFBS.DEC to ‘0’. At this point, hardware shall begin processing/executing commands from other PM
ports that are still outstanding and newly issued commands.

9.3.1.1.3 Device To Issue

The PxFBS.DEV field must be filled in by software correctly prior to writing the PxCI register. Note that
this value need not be set prior to writing the PxSACT register in the case of NCQ. The value in
PxFBS.DEV shall correspond to the value in the Port Multiplier port field of the command header for the
command issued on the write to PxCI.

This field only needs to be written on changes to the device to issue the next command to. It does not
need to be updated prior to every PxCI register write unless there is a change in the device to issue the
command to. Note that commands cannot be issued to multiple devices simultaneously, as only one
device may be identified in the Device to Issue field.

9.3.1.1.4 Active Device Optimization

The PxFBS.ADO field is used by the HBA to indicate the number of active devices that the
implementation has been optimized for. As an example, mid-range HBAs may optimize for up to four
drives attached on a Port Multiplier due to the typical size of enclosures the HBA is used with. For
optimal performance, software should limit the number of active devices (devices with commands
outstanding at the same time) based on this value.

The HBA is required to correctly operate when there are more devices active than indicated in this field.
However, in this condition the overall performance may degrade.

9.3.1.1.5 Command Issue

9.3.1.1.5.1 Non-queued Commands

Non-queued commands may use any command slot. The HBA guarantees that command issue order is
preserved, so software does not need to ensure any ordering of command slots.

To issue a non-queued command, the host should:

 Select an unused command slot

 Build the command table and command header

 Set PxFBS.DEV to the value of the Port Multiplier port field in the command header

 Set the bit in PxCI that corresponds to the command slot being used

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

99

9.3.1.1.5.2 Native Queued Commands

Software shall ensure that the NCQ tag corresponds to the command slot that the command is placed in.

To issue an NCQ command, the host should:

 Select an unused command slot

 Build the command table and command header, ensuring that the NCQ tag matches the slot
number

 Set PxFBS.DEV to the value of the Port Multiplier port field in the command header

 Set the bit in PxSACT that corresponds to the command slot being used

 Set the bit in PxCI that corresponds to the command slot being used

9.3.2 Command Ordering

When FIS-based switching is enabled (PxFBS.EN is set to ‘1’) then host hardware is responsible for
ensuring the command issue order for a particular device is maintained.

If multiple commands are issued to the same device by software in a single write of the PxCI register, the
transmission order amongst that set of commands is arbitrary. To ensure a particular order of issue for a
set of commands, the commands shall be issued by software in distinct writes of the PxCI register.

There is no command ordering requirements among commands being issued to separate Port Multiplier
ports. The only requirement is that the HBA ensure that commands for all devices are executed in a
manner that avoids starvation of any device. It is recommended that the HBA give priority to commands
issued to the control port.

9.3.3 FIS Receive Area

When using FIS-based switching, software shall allocate a FIS receive area that is 16 times larger than
the normal FIS receive area size. The allocated FIS receive area shall be 256 bytes * 16 = 4KB in size.
The PxFB address for the FIS receive area is required to be 4KB aligned when using FIS-based
switching.

When a non-Data FIS is received that should be copied in the FIS receive area, it will be copied into the
appropriate spot in the FIS receive area based on both the type of the FIS and the Port Multiplier port field
in the received FIS. The Port Multiplier port field in the FIS shall be used as an index into the FIS receive
area; PxFB/U[PM Port field * 256 bytes] shall be the base location for the FIS receive area that the FIS
should be copied into. Once the base location of the target’s FIS receive area is identified, the FIS is
copied to the appropriate offset based on the offsets specified in section 4.2.1. Note: There is an
exception for receiving an Unknown FIS. An Unknown FIS is always placed in the FIS receive area for
PM port 0.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 100

Figure 20: FIS Receive Area for FIS-based Switching

PxFB

FIS Receive

Area 0

FIS Receive

Area 1

FIS Receive

Area 2

FIS Receive

Area 15

PxFBU

Port Register

...

00h

100h

200h

300h

F00h

1000h

9.3.4 DMA Context

The HBA must be able to switch DMA context on the fly based on the stream of incoming requests from
the device. The HBA shall support interleaved FISes from different targets. For example, the HBA shall
support receiving a Data FIS from target 0, followed by a Data FIS from target 1, followed by a Data FIS
from target 0, followed by a Data FIS from target 1.

If a DMA operation with a particular target is interrupted by a DMA transfer with another target, the HBA is
responsible for keeping any context required to resume the interrupted DMA operation at a later point.
The context might include slot number, PRD entry number, and number of bytes transferred for that PRD
entry.

9.3.5 Data FIS transfers to the device – locking the interface

Upon reception of a DMA Activate, a PIO Setup with the ‘D’ bit cleared to ‘0’, or a DMA Setup FIS with the
‘A’ (auto-activate) bit set to ‘1’, the host hardware may transfer a Data FIS as the next action. The device
always wins any collisions on the SATA interface. To avoid having to back-off a Data FIS to be
transmitted, the host may lock use of the SATA interface subsequent to a DMA Activate, a PIO Setup with
the ‘D’ bit cleared to ‘0’, or a DMA Setup FIS with the ‘A’ bit set to ‘1’. The host locks the interface by
sending a single SYNC primitive between the last FIS transmitted on the interface and the first X_RDY
primitive for the Data FIS to be transmitted.

9.3.6 Error Handling

The following fatal controller errors are possible:

 Host Bus Fatal Error

 Host Bus Data Error

 Interface Fatal Error

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

101

 Task File Error

A host bus error is considered fatal to the host port (and all devices attached to that port). If the Host Bus
Fatal Error or Host Bus Data Error occurs, then host software shall follow the non-device specific error
recovery procedure.

An interface fatal error may be localized to a particular device or may be fatal to the entire port. For
example, a SYNC escape issued by the Port Multiplier in response to a transmitted non-Data FIS from the
host is considered fatal to the particular device only. However, a CRC error for a Data FIS may be
considered fatal to the entire port. If the error is fatal to a particular device only, then the hardware shall
set the PxFBS.SDE bit to ‘1’ and shall indicate the device that had the error in PxFBS.DWE. If the error is
fatal to the entire port, then PxFBS.SDE shall be cleared to ‘0’ by the hardware. Software should follow
either the device specific or non-device specific error procedure depending on whether PxFBS.SDE is set
to ‘1’.

A taskfile error condition is fatal for the impacted device only. After the PxTFD.STS.ERR bit is set to ‘1’,
host hardware shall pause command execution and shall not begin reception or start transmission of any
further FISes to/from the Port Multiplier. To recover from this error condition, software shall follow the
device specific error recovery procedure.

After recovering from an error condition and a reset has not yet been issued to the impacted device(s),
the HBA may receive FISes that correspond to commands that were flushed by the host controller as part
of the error recovery. If a Data or non-Data FIS for a non-existent command is received, the HBA shall
respond to that FIS with an R_OK and then shall discard the FIS. No error bits are set in this case.

9.3.6.1 Error Recovery from Device Specific Errors

In the case of a device specific error (PxFBS.SDE = ‘1’), the host controller will pause execution of
commands for all other devices until software acknowledges and clears the error condition. Host
software shall set the PxFBS.DEC bit to ‘1’ to clear the error condition for the particular device. The
PxTFD register shall not be modified by the HBA due to PxFBS.DEC being set to ‘1’. The internal pBsy
and pDrq variables for the device in error shall be cleared to zero.

When hardware clears PxFBS.DEC to ‘0’, the error condition has been cleared within the host controller.
Software should then issue a software reset (or COMRESET if necessary) to the device that experienced
the error to ensure that the device is in a known state. After PxFBS.DEC is cleared to ‘0’, software may
begin issuing new commands to all devices and hardware resumes execution of paused commands for
other devices.

If PxFBS.DEC does not clear to ‘0’ or software experiences additional timeouts, then software should
follow the error recovery procedures for non-device specific errors.

9.3.6.2 Error Recovery from Non-Device Specific Errors

In the case of a non-device specific error (PxFBS.SDE = ‘0’), all commands for the port need to be
flushed and each device that had commands outstanding needs to be reset. Host software shall clear the
PxCMD.ST bit to ‘0’ to recover from the error. When PxCMD.ST is transitions from ‘1’ to ‘0’, the internal
pBsy and pDrq variables are cleared to zero. All devices that had commands outstanding at the time of
the error shall be reset by the host using a software reset to that device (or a COMRESET if necessary).

9.3.6.3 Incorrect Port Multiplier Status

The PxIS.IPMS bit retains meaning with FIS-based switching. The IPMS bit is set whenever a FIS is
received from a device that does not have a command outstanding. The IPMS bit is not set when an
asynchronous notification is received.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 102

9.3.7 PxTFD Register Information

The PxTFD register is updated whenever a FIS is received from any attached device that updates the
Status and Error registers and either the BSY or DRQ bits is currently set in PxTFD.STS. Note that when
there are commands outstanding to multiple devices, the PxTFD register could be updated by any of
those devices. Thus, the host should not refer to the PxTFD register during the course of normal
operation when using FIS-based switching.

To determine if a command is completed or still outstanding, the host should refer to the PxCI and
PxSACT register. It is unsafe to refer to the PxTFD register to determine command completion when
doing FIS-based switching. The only case where it is safe to refer to the PxTFD register is when
commands are outstanding to only one device. In this situation, the PxTFD register is only being updated
by a single device and the results will be coherent.

When a taskfile error occurs (PxIS.TFES is set to ‘1’), the host may refer to the values in PxTFD. The
values in PxTFD at this time are guaranteed to correspond to the device that reported the taskfile error
condition.

9.3.8 SYNC Escape and setting the ‘R’ bit in Command Headers

When FIS-based switching is enabled (PxFBS.EN = ‘1’), the host shall not set the ‘R’ bit in the command
header for any command. Setting the ‘R’ bit causes the host to issue a SYNC Escape on the interface
prior to transmitting the Command FIS. When using FIS-based switching, SYNC Escapes shall not be
issued by the host since any FIS reception that is aborted may be from an entirely different device. A
SYNC Escape may be issued by the Port Multiplier or the device under certain error conditions.

In the case where the host cannot recover the link effectively, the next step is to issue a COMRESET to
the host port and re-enumerate the Port Multiplier. Issuing a COMRESET to the host port will cause all
attached devices to be reset.

9.3.9 FIS-based switching and Device Enumeration

When a host is using FIS-based switching and becomes aware that a new device has been attached (by
polling the SError.DIAG.X bits in the Port Multiplier or via asynchronous notification), the host should
enumerate the newly attached device by the procedure outlined in this section.

After becoming aware that a new device is attached, the host should complete all outstanding commands
to other devices attached to the Port Multiplier. The next step is then to clear the SError.DIAG.X bit for
the newly attached device in the corresponding SError register within the Port Multiplier. To get the
signature for the newly attached device, a software reset needs to be issued to that device.

Prior to issuing the software reset, software shall clear PxCMD.ST to ‘0’ and then clear PxFBS.EN to ‘0’.
While PxFBS.EN is cleared to ‘0’, PxCMD.ST should be set to ‘1’ in order to issue the software reset.
Software may then issue the software reset to the newly attached device, with the appropriate PM port
field. After enumerating the device and no additional commands are outstanding on the Port Multiplier,
the host may then re-enter FIS-based switching mode. To re-enter FIS-based switching mode, the host
clears PxCMD.ST to ‘0’, then sets PxFBS.EN to ‘1’, and then sets PxCMD.ST to ‘1’.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

103

10 Platform Communication

10.1 Software Initialization of HBA

Before any useful work can be performed, the HBA must be initialized. Initialization consists of two
independent phases: a firmware phase (platform BIOS) and a system software phase. Initialization of the
HBA’s PCI configuration space is beyond the scope of this specification.

10.1.1 Firmware Specific Initialization

To aid system software during runtime, the BIOS shall ensure that the following registers are initialized to
values that are reflective of the capabilities supported by the platform. Firmware shall always initialize the
following registers and values:

 CAP.SSS (support for staggered spin-up)

 CAP.SMPS (support for mechanical presence switches)

 PI (ports implemented)

 PxCMD.HPCP (whether port is hot plug capable). Firmware shall initialize the HPCP bit for each
port implemented on the platform (as defined by the PI register). The PxCMD.HPCP should be
set to ‘1’ if PxCMD.MPSP or PxCMD.CPD is set to ‘1’ for the port.

 PxCMD.MPSP (whether mechanical presence switch is attached to the port). Firmware shall
initialize the MPSP bit for each port implemented on the platform (as defined by the PI register).

 PxCMD.CPD (whether cold presence detect logic is attached to the port). Firmware shall
initialize the CPD bit for each port implemented on the platform (as defined by the PI register).

 PxDEVSLP.DSP (whether the port supports the DEVSLP logic). Firmware shall initialize the DSP
bit for each port implemented on the platform (as defined by the PI register).

After firmware has initialized the aforementioned registers, it shall then perform the following steps to
complete the staggered spin-up process (if applicable to the platform) on each port implemented by the
AHCI HBA (as indicated by the PI register):

1. Indicate that system software is AHCI aware by setting GHC.AE to ‘1’.

2. Ensure that PxCMD.ST = ‘0’, PxCMD.CR = ‘0’, PxCMD.FRE = ‘0’, PxCMD.FR = ‘0’, and
PxSCTL.DET = ‘0h’.

3. Allocate memory for the command list and the FIS receive area. Set PxCLB and
PxCLBU to the physical address of the allocated command list. Set PxFB and PxFBU to
the physical address of the allocated FIS receive area. Then set PxCMD.FRE to ‘1’.

4. Initiate a spin up of the SATA drive attached to the port; i.e. set PxCMD.SUD to ‘1’.
5. Wait for a positive indication that a device is attached to the port (the maximum amount

of time to wait for presence indication is specified in the Serial ATA Revision 2.6
specification). This is done by polling PxSSTS.DET. If PxSSTS.DET returns a value of 1h
or 3h when read, then system software shall continue to the next step, otherwise if the
polling process times out system software moves to the next implemented port and
returns to step 1.

6. Clear the PxSERR register, by writing ‘1s’ to each implemented bit location.
7. Wait for indication that SATA drive is ready. This is determined via an examination of

PxTFD.STS. If PxTFD.STS.BSY, PxTFD.STS.DRQ, and PxTFD.STS.ERR are all ‘0’,
prior to the maximum allowed time as specified in the ATA/ATAPI-7 specification, the
device is ready.

10.1.2 System Software Specific Initialization

This section describes how system software places the AHCI HBA into a minimally initialized state.
Because the term “system software” is used to collectively reference both the platform BIOS and
operating system, this section applies to any software that is AHCI aware. Note that some steps may not
be required for system BIOS (e.g. ensuring that the controller is not running) since the host controller will
be in a known state following a system reset. Additionally, if system BIOS already allocated memory for
and initialized the appropriate registers for the command list and FIS receive area, it may skip this step of

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 104

the process. Software may perform an HBA reset prior to initializing the controller by setting GHC.AE to
‘1’ and then setting GHC.HR to ‘1’ if desired.

To place the AHCI HBA into a minimally initialized state, system software shall:

1. Indicate that system software is AHCI aware by setting GHC.AE to ‘1’.
2. Determine which ports are implemented by the HBA, by reading the PI register. This bit

map value will aid software in determining how many ports are available and which port
registers need to be initialized.

3. Ensure that the controller is not in the running state by reading and examining each
implemented port’s PxCMD register. If PxCMD.ST, PxCMD.CR, PxCMD.FRE and
PxCMD.FR are all cleared, the port is in an idle state. Otherwise, the port is not idle and
should be placed in the idle state prior to manipulating HBA and port specific registers.
System software places a port into the idle state by clearing PxCMD.ST and waiting for
PxCMD.CR to return ‘0’ when read. Software should wait at least 500 milliseconds for
this to occur. If PxCMD.FRE is set to ‘1’, software should clear it to ‘0’ and wait at least
500 milliseconds for PxCMD.FR to return ‘0’ when read. If PxCMD.CR or PxCMD.FR do
not clear to ‘0’ correctly, then software may attempt a port reset or a full HBA reset to
recover.

4. Determine how many command slots the HBA supports, by reading CAP.NCS.
5. For each implemented port, system software shall allocate memory for and program:

 PxCLB and PxCLBU (if CAP.S64A is set to ‘1’)

 PxFB and PxFBU (if CAP.S64A is set to ‘1’)

It is good practice for system software to ‘zero-out’ the memory allocated and referenced
by PxCLB and PxFB. After setting PxFB and PxFBU to the physical address of the FIS
receive area, system software shall set PxCMD.FRE to ‘1’.

6. For each implemented port, clear the PxSERR register, by writing ‘1s’ to each
implemented bit location.

7. Determine which events should cause an interrupt, and set each implemented port’s PxIE
register with the appropriate enables. To enable the HBA to generate interrupts, system
software must also set GHC.IE to a ‘1’.

Note: Due to the multi-tiered nature of the AHCI HBA’s interrupt architecture, system
software must always ensure that the PxIS (clear this first) and IS.IPS (clear this second)
registers are cleared to ‘0’ before programming the PxIE and GHC.IE registers. This will
prevent any residual bits set in these registers from causing an interrupt to be asserted.

At this point the HBA is in a minimally initialized state. System software may provide additional
programming of the GHC register and port PxCMD and PxSCTL registers based on the policies of the
operating system and platform – these details are beyond the scope of this specification.

Software shall not set PxCMD.ST to ‘1’ until it is determined that a functional device is present on the port
as determined by PxTFD.STS.BSY = ‘0’, PxTFD.STS.DRQ = ‘0’, and PxSSTS.DET = 3h. Note that to
enable the PxTFD register to be updated with the initial Register FIS for a port, the PxSERR.DIAG.X bit
must be cleared to ‘0’.

10.2 Hardware Prerequisites to Enable/Disable GHC.AE

When a legacy interface is supported in addition to AHCI (CAP.SAM = ‘0’), software may desire to switch
from one mode to the other. Actively switching between AHCI and a legacy mode is strongly discouraged
due to OS sensitivity to the class code used by the controller. This section lists hardware requirements
only for switching between AHCI mode and a legacy mode, it does not comprehend any software
considerations.

To switch from legacy mode to AHCI mode, the legacy interface shall be in an idle state and there should
be no outstanding commands to any devices connected to the controller. Additionally, any transaction
errors reported through the legacy task file status register (i.e. ERR == '1') shall be rectified prior to

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

105

switching to AHCI mode. This can be accomplished via a software reset. At this point, software can begin
the sequence for initializing the AHCI controller outlined in section 10.1.

To switch from AHCI mode to legacy mode, the AHCI controller must be brought to an idle state for all
ports and there should be no outstanding commands to any devices connected to the controller. The
PxCMD.ST should be cleared to ‘0’ for all ports and software should ensure that the PxCMD.CR bit is
cleared to ‘0’ for all ports. The PxCMD.FRE bit should be cleared to ‘0’ for all ports and software should
ensure that PxCMD.FR is cleared to ‘0’ for all ports. Then software should clear the GHC.IE bit to ‘0’ to
ensure there are no interrupts that occur on the AHCI controller. At this point, software may set the
GHC.AE bit to ‘0’. After clearing the GHC.AE bit to ‘0’, software should then issue a COMRESET to each
SATA port to ensure that the legacy controller recognizes whether a drive is present on the port, and if so
then captures its signature. Commands may be issued at this point to the legacy controller. Software
shall initialize the devices after switching modes.

10.3 Software Manipulation of Port DMA Engines

Each port contains two major DMA engines. One DMA engine walks through the command list, and is
controlled by PxCMD.ST. The second DMA engine copies received FISes into system memory, and is
controlled by PxCMD.FRE.

10.3.1 Start (PxCMD.ST)

When PxCMD.ST is set to ‘1’, software is limited in what actions it is allowed to perform on the port (refer
to section 5.3.2.3).

 It shall not manipulate PxCMD.POD to power on or off a device through cold presence detect
logic (if supported by the HBA).

 It shall not manipulate PxSCTL.DET to change the Phy state

 It shall not manipulate PxCMD.SUD to spin-up the device (if supported by the HBA)

The above actions are only allowed while the HBA is idle, indicated by both PxCMD.ST and PxCMD.CR
being equal to ‘0’. This is noted by the HBA state machine H:NotRunning state. If software performs any
of the above actions while the port is not idle (PxCMD.ST or PxCMD.CR are set to ‘1’), indeterminate
results may occur.

Software shall not set PxCMD.ST to ‘1’ until it verifies that PxCMD.CR is ‘0’ and has set PxCMD.FRE to
‘1’. Additionally, software shall not set PxCMD.ST to ‘1’ until a functional device is present on the port (as
determined by PxTFD.STS.BSY = ‘0’, PxTFD.STS.DRQ = ‘0’, and (PxSSTS.DET = 3h, or PxSSTS.IPM =
2h or 6h or 8h)) and PxCLB/PxCLBU are programmed to valid values.

Before the HBA enters the low power D3 state, software shall clear PxCMD.ST to ‘0’.

10.3.2 FIS Receive Enable (PxCMD.FRE)

When PxCMD.FRE is set (causing PxCMD.FR to be set to ‘1’), the HBA receives FISes from the device
and copies them into system memory. When PxCMD.FRE is cleared (causing PxCMD.FR to be cleared
to ‘0’), received FISes are held internally, and if the HBA’s internal FIFO is full, further FIS reception is
blocked.

Software is allowed to manipulate PxCMD.FRE so that it may move the FIS receive area to a new
location. When this bit is cleared to ‘0’, software must first wait for PxCMD.FR to clear to ‘0’, indicating
that the DMA engine for FIS reception is in an idle condition. When PxCMD.FR and PxCMD.FRE are
both cleared to ‘0’, software may update the values of PxFB and PxFBU. Prior to setting PxCMD.FRE to
‘1’, software shall ensure that PxFB and PxFBU are set to valid values. Software shall not write PxFB
and PxFBU while PxCMD.FRE is set to ‘1’.

Software shall set this bit to ‘1’ prior to setting PxCMD.ST to ‘1’. Software shall not clear this bit while
PxCMD.ST or PxCMD.CR is set to ‘1’.

Upon HBA reset, this bit is cleared. The D2H Register FIS containing the device signature shall be
accepted by the HBA, and the signature field updated.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 106

Note that if the HBA stops running due to an error (for example, PxIS.IFS is set to ‘1’), FISes may not be
posted until the PxCMD.ST bit is cleared to ‘0’ to recover from the error.

10.4 Reset

AHCI supports three levels of reset:

 Software – a single device on one of the ports is reset, but the HBA and physical communication
remain intact. This is the least intrusive.

 Port – the physical communication between the HBA and device on a port are disabled. This is
more intrusive

 HBA – the entire HBA is reset, and all ports are disabled. This is the most intrusive.

When an HBA or port reset occurs, Phy communication shall be re-established with the device through a
COMRESET followed by the normal out-of-band communication sequence defined in Serial ATA. At the
end of the reset, the device, if working properly, will send a D2H Register FIS, which contains the device
signature. When the HBA receives this FIS, it updates PxTFD.STS and PxTFD.ERR register fields, and
updates the PxSIG register with the signature.

Software is recommended to follow a staggered reset approach, starting from a less intrusive reset
mechanism and then using a more intrusive reset mechanism only if the less intrusive mechanism does
not succeed in clearing the condition.

10.4.1 Software Reset

Legacy software contained a standard mechanism for generating a reset to a Serial ATA device – setting
the SRST (software reset) bit in the Device Control register. Serial ATA has a more robust mechanism
called COMRESET, also referred to as port reset. A port reset is the preferred mechanism for error
recovery and should be used in place of software reset.

To issue a software reset in AHCI, software builds two H2D Register FISes in the command list. The first
Register FIS has the SRST bit set to ‘1’ in the Control field of the Register FIS, the ‘C’ bit is set to ‘0’ in the
Register FIS, and the command table has the CH[R] (reset) and CH[C] (clear BSY on R_OK) bits set to
‘1’. The CH[R] (reset) bit causes the HBA to perform a SYNC escape if necessary to put the device into
an idle condition before sending the software reset. The CH[C] (clear BSY on R_OK) bit needs to be set
for the first Register FIS to clear the BSY bit and proceed to issue the next Register FIS since the device
does not send a response to the first Register FIS in a software reset sequence. The second Register
FIS has the SRST bit set to ‘0’ in the Control field of the Register FIS, the ‘C’ bit is set to ‘0’ in the Register
FIS, and the command table has the CH[R] (reset) and CH[C] (clear BSY on R_OK) bits cleared to ‘0’.
Refer to the Serial ATA Revision 2.6 specification for more information on the software reset FIS
sequence.

When issuing a software reset sequence, there should not be other commands in the command list.
Before issuing the software reset, software must clear PxCMD.ST, wait for the port to be idle (PxCMD.CR
= ‘0’), and then re-set PxCMD.ST. PxTFD.STS.BSY and PxTFD.STS.DRQ must be cleared prior to
issuing the reset. If PxTFD.STS.BSY or PxTFD.STS.DRQ is still set based on the failed command, then
a port reset should be attempted or command list override (PxCMD.CLO) should be used if supported.

Note that a device-to-host FIS from a previously failed command may be received after the PxCMD.ST bit
has been cleared and/or re-set. It is recommended that the HBA ignore such a FIS or SYNC Escape that
FIS (as directed by the CH[R] bit being set in the first software reset H2D Register FIS).

10.4.2 Port Reset

If a port is not functioning properly after a software reset, software may attempt to re-initialize
communication with the port via a COMRESET. It must first clear PxCMD.ST, and wait for PxCMD.CR to
clear to ‘0’ before re-initializing communication. However, if PxCMD.CR does not clear within a
reasonable time (500 milliseconds), it may assume the interface is in a hung condition and may continue
with issuing the port reset.

Software causes a port reset (COMRESET) by writing 1h to the PxSCTL.DET field to invoke a
COMRESET on the interface and start a re-establishment of Phy layer communications. Software shall

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

107

wait at least 1 millisecond before clearing PxSCTL.DET to 0h; this ensures that at least one COMRESET
signal is sent over the interface. After clearing PxSCTL.DET to 0h, software should wait for
communication to be re-established as indicated by PxSSTS.DET being set to 3h. Then software should
write all 1s to the PxSERR register to clear any bits that were set as part of the port reset.

When PxSCTL.DET is set to 1h, the HBA shall reset PxTFD.STS to 7Fh and shall reset PxSSTS.DET to
0h. When PxSCTL.DET is set to 0h, upon receiving a COMINIT from the attached device,
PxTFD.STS.BSY shall be set to ’1’ by the HBA.

10.4.3 HBA Reset

If the HBA becomes unusable for multiple ports, and a software reset or port reset does not correct the
problem, software may reset the entire HBA by setting GHC.HR to ‘1’. When software sets the GHC.HR
bit to ‘1’, the HBA shall perform an internal reset action. The bit shall be cleared to ‘0’ by the HBA when
the reset is complete. A software write of ‘0’ to GHC.HR shall have no effect. To perform the HBA reset,
software sets GHC.HR to ‘1’ and may poll until this bit is read to be ‘0’, at which point software knows that
the HBA reset has completed.

If the HBA has not cleared GHC.HR to ‘0’ within 1 second of software setting GHC.HR to ‘1’, the HBA is in
a hung or locked state.

When GHC.HR is set to ‘1’, GHC.AE, GHC.IE, the IS register, and all port register fields (except
PxFB/PxFBU/PxCLB/PxCLBU) that are not HwInit in the HBA’s register memory space are reset. The
HBA’s configuration space and all other global registers/bits are not affected by setting GHC.HR to ‘1’.
Any HwInit bits in the port specific registers are not affected by setting GHC.HR to ‘1’. The port specific
registers PxFB, PxFBU, PxCLB, and PxCLBU are not affected by setting GHC.HR to ‘1’. If the HBA
supports staggered spin-up, the PxCMD.SUD bit will be reset to ‘0’; software is responsible for setting the
PxCMD.SUD and PxSCTL.DET fields appropriately such that communication can be established on the
Serial ATA link. If the HBA does not support staggered spin-up, the HBA reset shall cause a COMRESET
to be sent on the port.

10.5 Interface Speed Support

The HBA indicates the maximum speed it can support via the CAP.ISS register. Software can further limit
the speed of a port by manipulating each port’s PxSCTL.SPD field to a lower value. If software writes a
value that is greater than the value in CAP.ISS, the actual speed negotiated will be limited by CAP.ISS,
as shown in the following table:

CAP.ISS PxSCTL.SPD Maximum Speed Negotiated

1h 0h 1.5 Gbps

1h 1h 1.5 Gbps

1h 2h 1.5 Gbps

1h 3h 1.5 Gbps

2h 0h 3 Gbps

2h 1h 1.5 Gbps

2h 2h 3 Gbps

2h 3h 3 Gbps

3h 0h 6.0 Gbps

3h 1h 1.5 Gbps

3h 2h 3 Gbps

3h 3h 6 Gbps

If PxSCTL.SPD is set to a non-zero value when system software loads, platform BIOS (or expansion
ROM) decided that the current port required speed limitation. Speed limitation may be set by the platform
BIOS to avoid an inordinate number of errors on a port; e.g. a laptop swapbay connector that goes
through several intermediate connectors may need to speed limitation for robust operation. If
PxSCTL.SPD is set to a non-zero value when system software loads, system software should preserve
this setting, including across power management state transitions. It is recommended that platform BIOS
(or expansion ROM) not specify a speed limitation unless it is necessary for robust operation. If system
software encounters errors and speed could be limited further, system software is allowed to restrict the
speed negotiated to a slower rate.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 108

10.6 BIOS/OS Handoff Mechanism

During the boot process, ownership of the HBA is passed from the BIOS to the OS. The OS naturally
assumes ownership of the HBA once the boot loader has been able to load the appropriate OS driver,
and ceases to request the BIOS to access the drive any longer. If the BIOS is only accessing the drive
based on demand requests generated by the boot loader then there is no contention for the HBA when
the OS driver is fully loaded. However, if the BIOS or option ROM is prefetching or doing other
background I/O without the boot loader’s knowledge, there may be contention when the OS driver loads.

A mechanism is defined in this section to allow the BIOS and OS driver to coordinate regarding
ownership changes for the HBA in the presence of BIOS SMI AHCI handlers that may execute non-
demand requests. The mechanism uses the BIOS/OS Handoff Control and Status register for
coordination. The mechanism is supported if BIOS/OS Handoff bit is set to ‘1’ in the HBA Capabilities
Extended register (CAP2.BOH = ‘1’).

The BIOS never assumes ownership of the HBA from the OS. Once the OS owns the HBA, the OS shall
retain ownership of the HBA until the next system reset.

10.6.1 Default / reset state

When the HBA initially powers on, the BIOS Ownership (BOHC.BOS) and OS Ownership (BOHC.OOS)
bits shall be ‘0’.

10.6.2 BIOS declares ownership request

When the BIOS wants to take control of the HBA and is implementing SMI AHCI handlers, the BIOS
executes the following method:

1. Sets the BIOS Ownership (BOHC.BOS) bit to ‘1’.

2. Sets up an SMI handler for the OS Ownership Status.

3. Clears the SMI on OS Ownership Status (BOHC.OOC) bit to ‘0’ by writing a ‘1’ to it.

4. Sets the SMI on OS Ownership Enable (BOHC.SOOE) bit to ‘1’.

BIOS cannot take control if the OS Ownership (BOHC.OOS) bit is set.

10.6.3 OS declares ownership request

When the OS wants to take control of the HBA, the OS driver executes the following method:

1. Sets the OS Ownership (BOHC.OOS) bit to ’1’.

2. This will cause an SMI so that the BIOS can cleanup and pass control if needed.

3. Spin on the BIOS Ownership (BOHC.BOS) bit, waiting for it to be cleared to ‘0’.

4. If the BIOS Busy (BOHC.BB) has been set to ‘1’ within 25 milliseconds, then the OS
driver shall provide the BIOS a minimum of two seconds for finishing outstanding
commands on the HBA.

5. If after 25 milliseconds the BIOS Busy (BOHC.BB) bit has not been set to ‘1’, then the OS
can assume control and perform whatever cleanup is necessary.

10.6.4 BIOS releases ownership

When the BIOS wants to release ownership of the HBA, the BIOS executes the following method:

1. Sets the BIOS Busy (BOHC.BB) bit to ‘1’.

2. Refuses any new transactions.

3. Finishes any outstanding transactions.

4. Cleans up the Port(s) for ownership change.

5. Clears the SMI on OS Ownership Enable (BOHC.SOOE) bit to ‘0’.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

109

6. Clears the SMI on Ownership Status (BOHC.OOC) bit to ‘0’ by writing a ‘1’ to it.

7. Clears the BIOS Busy (BOHC.BB) bit to ‘0’.

8. Clears the BIOS Ownership (BOHC.BOS) bit to ‘0’.

10.7 Interrupts

10.7.1 Tiered Operation

AHCI defines a two-tiered interrupt architecture, which allows for reporting of interrupts to software such
that software can handle interrupts through the least amount of programming and status checking. A
diagram of the interrupt tiers is shown below:

Figure 21: Interrupt Tiers

IS Register

GHC.IE && Not(CMD.ID)
MSI Engine

MC.MSIE

PCI Pin Engine

Port 0

PxIS Register

PxIE Register

Other Interrupt Bits

Port 31

PxIS Register

PxIE Register

Other Interrupt Bits 2
nd

 tier

1
st

 tier

. . .

10.7.1.1 First Tier (IS Register)

The first tier is identified by the GHC and IS registers.

The GHC.IE bit enables interrupts for the entire HBA. This is the master enable. Until this bit is set, the
HBA shall not generate any interrupts. When it is cleared, the HBA may set Interrupt Status bits in the IS
register but no interrupt is asserted on the controller. This bit is only a mask, and does not affect the
setting of any of the interrupt status bits in any of the ports. These bits are set regardless of whether or
not interrupts are enabled.

The 32-bit IS register reports whether a port has an interrupt pending. This is a bit-mapped register
indicating a bit for each of the 32 ports allowed in AHCI. Each bit location can be thought of as reporting
a ‘1’ if the virtual “interrupt line” for that port is indicating it wishes to generate an interrupt. That is, if a
port has one or more interrupt status bit set, and the enables for those status bits are set, then this bit
shall as set. The bits in this register are read/write clear. It is set by the level of the virtual interrupt line
being a set, and cleared by a write of ‘1’ from the software.

This register allows software to perform a quick glance of the HBA to see which ports are reporting
interrupts. By being read/write clear, it also allows for the implementation of message signaled interrupts.

10.7.1.2 Second Tier (PxIS Registers)

The second tier is identified in each port, through the PxIS (status) and PxIE (interrupt enable) registers.
The PxIS register for each port has various interrupt bits

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 110

Each one of these interrupts can be individually enabled or disabled for a port, by setting the
corresponding bit in PxIE. The status bit in PxIS is always set regardless of the setting of the
corresponding PxIE bit.

10.7.2 HBA/SW Interaction

10.7.2.1 Pin Based and Single MSI Message Based Behavior

This is the mode of interrupt operation if any of the following conditions are met:

 Pin based interrupts are being used – MSI is disabled (MSICAP.MC.MSIE=’0’)

 Single MSI is being used – MSI is enabled (MSICAP.MC.MSIE=’1’) and MSICAP.MC.MME=0h

In this mode, the IS register determines whether the PCI interrupt line shall be driven active or MSI
message shall be sent. The PxIS register contains status information to generate the interrupt. The
resulting logical “AND” of the PxIS bit and corresponding PxIE bit results in a “virtual wire” that sets a
sticky bit in the IS register. When a level of a virtual wire for a port is ‘1’, the IS register bit for that port
shall be set.

The resulting output of the IS register is sent to one of two places. If MSIs are not enabled, the resulting
IS bits are logical “ORed” together – any bit being a one causes the PCI interrupt line to be active
(electrical ‘0’). If MSIs are enabled, any change to the IS register that doesn’t result in the register being
all cleared shall cause an MSI to be sent. Therefore, that in wire mode, a single wire remains active,
while in MSI mode, several messages may be sent, as each edge triggered event on a port shall cause a
new message, as shown in Figure 22.

In order to clear an interrupt, software must first clear the event from the PxIS register, then clear the
interrupt event from the IS register. If software clears IS register only, leaving the level of the virtual wire
from the PxIS register set, the resulting level of ‘1’ shall cause the IS register bit to be re-set.

Figure 22: MSI vs. PCI IRQ Actions
Status of Tier 1 Register Wire-Mode Action MSI Action

All bits ‘0’ Wire inactive No action

One or more bits set to ‘1’ Wire active New message sent

One or more bits set to ‘1’, new bit gets set to ‘1’ Wire active New message sent

One or more bits set to ‘1’, software clears some (but not all)
bits

Wire active New message sent

One or more bits set to ‘1’, software clears all bits Wire inactive No action

10.7.2.2 Multiple MSI Based Messages

An HBA may optionally support multiple MSI messages for better performance. In this mode, multiple
interrupt messages are allocated for the controller; each port may have its own interrupt message. To
support this mode, the MSICAP.MC.MMC field represents a power-of-2 wrapper on the number of
implemented ports in the global memory space PI register. For example, if 3 ports are implemented, then
the MSICAP.MC.MMC field must be ‘010’ (4 interrupts).

Multiple-message MSI enables each port to send its own interrupt message, as opposed to a single
message for all ports. When enabled for multiple message generation, generation of interrupts is no
longer controlled through the IS register. Hardware shall continue to set the IS register just as in the
single message case, however the IS register is not used to determine whether to generate an MSI. The
IS register may be used by software if fewer than the requested number of messages is granted in order
to determine which port had the interrupt. The GHC.IE register shall still be a global interrupt
enable/disable for all ports when multiple-message MSI is used.

Each port receives its own interrupt message, up to a maximum of 16 interrupts (16 ports). 16 interrupts
is the practical limit of MSI messages in an x86/Windows environment. The mapping of ports to interrupts
is done in a 1-1 relationship, up to the maximum number of assigned interrupts.

When generating an MSI message, a port looks at its PxIS register, and uses the following rules to
generate a message:

 If a new bit is set in PxIS, and the corresponding bit in PxIE is set, send a message

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

111

 If bits are cleared in PxIS, and other bits remain set, if their corresponding bits in PxIE are set,
send a message.

 If a PxIE bit transitions from ‘0’ to ‘1’ and the corresponding bit in PxIS is set, send a message.

10.7.2.3 Multiple MSI When Fewer Messages Allocated Than Requested

When the number of MSI messages allocated is less than the number requested, hardware may
implement one of two behaviors:

 Hardware may assign each port its own interrupt and then force all additional ports to share the
last interrupt message allocated, indicated by clearing GHC.MRSM to ‘0’.

 Hardware may revert to single MSI mode, indicated by setting GHC.MRSM to ‘1’.

These two behaviors for are outlined in the following subsections.

10.7.2.3.1 Sharing Last Message

When fewer MSI messages are allocated than requested, hardware may assign each port its own
message until all messages are allocated. Then hardware assigns the last/maximum interrupt message
to any unassigned port. Thus, the last/maximum interrupt message is shared amongst several ports.
Software should use the IS register to determine which port has had an interrupt when the last/maximum
interrupt message triggers an interrupt. Messages are assigned starting at port 0 and then incremented
upward. When this mechanism is used, GHC.MRSM shall be cleared to ‘0’. Interrupts are generated
based on the rules for multiple MSI messages in section 10.7.2.2.

Take the following example in Figure 23, where 6 ports are implemented (ports 0 – 5) and command
completion coalescing is supported and uses IS.IPS bit 6. When only 4 messages are allocated
(messages 0 – 3), the mapping of ports to interrupts is as follows:

Figure 23: Port/CCC and MSI Message Mapping, Example 1
IS bit Port #

or CCC
Interrupt Message

0 Port 0 0

1 Port 1 1

2 Port 2 2

3 Port 3

3
4 Port 4

5 Port 5

6 CCC

When multiple MSI is supported, the HBA shall request at least as many messages as the maximum IS
bit in use (either the maximum port number or the IS bit that command completion coalescing uses).
Each implemented port maps to an interrupt message of the same value if enough messages are
allocated. For example, port 2 maps to message 2, even if port 1 is not implemented. Figure 24 is an
example, showing 6 ports, where only ports 0, 3, and 5 are implemented. In this example, command
completion coalescing is not supported.

Figure 24: Port and MSI Message Mapping, Example 2
Port Interrupt Message

0 0

1 1 (unused)

2 2 (unused)

3 3

4 4 (unused)

5 5

- 6 (unused)

- 7 (unused)

In this example, since the HBA had 6 ports, it is required to ask for 8 interrupt messages. In this example,
therefore, messages 6 and 7 are also not used.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 112

If multiple ports share the same MSI message, the rules for generating an MSI must be implemented
across all the ports that share that message. For example, in example 1 ports 3-7 share a single
message. If all P4IS bits are cleared, but (P3IS & P3IE) is non-zero, a new message is sent.

10.7.2.3.2 Reverting to Single MSI Mode

The advantage of multiple MSI is often negated when fewer messages are allocated than requested. To
reduce hardware and software complexity, hardware may choose to revert to single MSI mode when
fewer messages are allocated than requested. When single MSI mode is reverted to, hardware
generates interrupts based on the rules for single MSI in section 10.7.2.1. To indicate that hardware has
reverted to single MSI mode, hardware shall set the GHC.MRSM bit to ‘1’, as described in section 3.1.2.

10.7.3 Disabling Device Interrupts (NIEN Bit in Device Control Register)

The NIEN bit was part of the device control register (legacy I/O addresses 3F6h for primary, 376h for
secondary). A legacy HBA must snoop writes to this bit to know whether to mask device interrupts. An
AHCI HBA does not snoop this bit. AHCI does not use the NIEN bit; all masking is controlled via the PxIE
register. Software should always set the NIEN bit to ‘0’ in all Register FISes transmitted to the device.

10.8 Mechanical Presence Switch Operation

In systems that support a mechanical presence switch, the platform contains a mechanical mechanism
that acts as an attention indicator or locking mechanism. When this mechanism changes state (such as a
button pressed or switch opened/closed), a line changes state. This line is a level driven signal, not
edge-triggered.

HBAs that support mechanical presence switches have the following additional features:

 CAP.SMPS shall be set to ‘1’

 PxCMD.MPSP shall be set to ‘1’ for each port that has a mechanical presence switch attached.

 An additional input pin per port on the HBA, the level is reflected in PxCMD.MPSS which shows
whether the mechanical presence switch is open or closed.

10.9 Cold Presence Detect Operation

In systems that support cold presence detect, the platform board contains voltage comparator logic, as
described in the Serial ATA Revision 2.6 specification, for recognizing attachments, and FET control to
supply power to the device.

HBAs that support cold presence-detect have the following additional features:

 PxCMD.CPD shall be set to ‘1’ for each port that has cold presence detection capability.

 An additional input pin per port on the HBA.

 An additional output pin per port on the HBA to be used as FET control for the power rails to the
device.

 For each port, PxCMD.POD shall be read/write.

When an HBA that supports cold presence-detect is first powered-up, no power is supplied to the
devices. Initialization software checks the status of the ports, and if a device is connected, sets
PxCMD.POD to a ‘1’ to supply power to the port.

10.10 Staggered Spin-up Operation

Staggered spin-up is an optional feature in the Serial ATA Revision 2.6 specification. This feature
enables an HBA to individually spin-up attached devices. The feature is useful to avoid having a power
supply that must handle maximum current draw from all devices at the same time when applying power to
the devices. In order for a system to support staggered spin-up, the devices, the HBA, and BIOS/driver
must all support staggered spin-up.

In systems that support staggered spin-up, an HBA can individually spin-up devices connected to
implemented SATA ports. In systems that do not support staggered spin-up, the HBA spins up all
connected SATA devices upon receiving power to the HBA.

Staggered spin-up is only performed when power is applied to the drive. If the drive has been spun-down
due to an ATA command (e.g. STANDBY) and the device continues to be powered, the drive will not

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

113

spin-up again until access to the media is required – the staggered spin-up mechanism is not invoked in
this case. Note that when a system transitions to system power management state S3 or greater, the
drive will cease having power applied. Since the drive loses power, when the drive is powered back on in
the transition back to S0, the drive will undergo another staggered spin-up process.

HBAs that support staggered spin-up shall have the following additional features:

 CAP.SSS shall be set.

 For each port, PxCMD.SUD shall be read/write.

10.10.1 Interaction of PxSCTL.DET and PxCMD.SUD

In systems that support staggered spin-up, there is an interaction between PxSCTL.DET and
PxCMD.SUD in controlling the Phy behavior. The two register fields must be set correctly in
order to avoid illegal combinations of the two values. In systems that do not support staggered
spin-up, PxCMD.SUD is read-only and always set to ‘1’ such that there is no interaction.

The PxSCTL.DET value manipulates the behavior of the Phy. For platforms that support staggered spin-
up, PxCMD.SUD also manipulates the behavior of the Phy. The following table describes the interaction.

PxSCTL.DET PxCMD.SUD Mode Behavior

0h 0 Listen

Interface in a reduced power state.

 If COMINIT is received then PxSERR.DIAG.X shall be set and
no response (OOB signal) shall be sent to the device.

 COMWAKE ignored.

Software shall only place the port into this state when it believes
that no device is connected on the port. In this mode, the HBA
forces the Phy into a low power state without requesting a Slumber
transition on the link.

0h 0  1 Spin-Up HBA shall send COMRESET, begin initialization sequence

0h 1 Normal

This is the state where the HBA is performing data transfers.

 COMINIT received, PxSERR.DIAG.X set, send COMRESET,
begin initialization sequence

 COMWAKE received, wake the link

1h 0 Illegal
If software programs this condition, indeterminate results may
occur.

1h 1 Reset
HBA continuously transmits COMRESET. HBA does not listen for
COMINIT. The HBA may optionally set the PxSERR.DIAG.X bit if a
COMINIT is received.

1h  0h 1 Initialize Stop sending COMRESET, begin initialization sequence.

4h N/A Off Off

Software must only clear PxCMD.SUD if it believes that no device is attached. In Listen Mode
(PxSCTL.DET = 0h and PxCMD.SUD = 0), the HBA Phy may enter a reduced power state, equivalent to
the power consumed while in the Slumber power management state. The HBA Phy enters this reduced
power state without negotiating a transition to Slumber on the link, as asking for a transition to Slumber
when no device is attached will fail, and therefore the HBA Phy would stay in a high power state. To
avoid this software should ensure that PxSSTS.DET = 0h indicating that no device is present before
clearing PxCMD.SUD.

10.10.2 Spin-Up Procedure (Informative)

During initial system power-on in a system that supports staggered spin-up, software needs to spin up
each attached device. In addition, when the system transitions from the S3 or greater system power
management state back to S0, the attached drives will also need to be spun up. In order to spin up the
devices attached to the HBA, software should perform the procedure outlined in section 10.1.1 for
staggered spin-up.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 114

10.10.3 Preparing for Low Power System State (Informative)

Before a system transitions to the S3 or greater power management state, the driver should prepare the
drives in the system for a smooth transition to the low power state and eventually back to S0. When a
system transitions to state S3 or greater, the drive will cease having power applied. Since the drive loses
power, when the drive is powered back on in the transition back to S0 the drive will undergo another
staggered spin-up process.

Software should follow the procedure outlined below on each implemented port before the power
management transition:

1. If a drive is present, issue either the STANDBY or SLEEP command to the drive.

2. If a drive is present, place the interface into Slumber by setting PxCMD.ICC = 6h.

3. After the interface is no longer in the active power state as specified by PxSSTS.IPM, set
PxSCTL.DET = 0h and PxCMD.SUD = 0h to enter listen mode. Note that PxSCTL.DET must be
set to 0h before setting PxCMD.SUD to 0h.

This process ensures that staggered spin-up can be used on the system transition back to S0.

10.10.4 When to Enter Listen Mode (Informative)

Listen mode should be entered on a particular port when:

 Staggered spin-up is supported on the platform

 Interlocked switch is not supported on this port

 Cold presence detect is not supported on this port

 No device is attached to this port

In this case, listen mode should be entered to save power on the port while still allowing a hot plug
insertion event to be detected via PxSERR.DIAG.X. Listen mode should also be entered to save power
when a drive is present on a port and the system is about to enter a low power state, refer to section
10.10.3.

Listen mode should not be used if mechanical presence switch or cold presence detect is
supported on the port. In this instance, the Phy for the port should be placed in the offline mode
to save maximum power since any hot plug insertion can be detected using the mechanical
presence switch or cold presence detect interrupts.

10.11 Asynchronous Notification

Asynchronous Notification is a feature in the Serial ATA Revision 2.6 specification. This feature allows a
device to send a signal to the host when the device status has changed. The signal sent to the host is a
Set Device Bits FIS with the ‘I’ (interrupt) and ‘N’ (notification) bits set to ‘1’.

The HBA may support receipt of an asynchronous notification event via the Set Device Bits FIS for a
directly attached device. To use asynchronous notification, software should set the PxIS.SDBS bit to
enable interrupt notification on a Set Device Bits FIS. When the device has a status change, the device
will signal this to the host with a Set Device Bits FIS. In response to receiving a PxIS.SDBS interrupt on
an idle port, the host should interrogate the device to determine the cause of the interrupt.

10.11.1 Notifications from ATAPI Devices

Host software may utilize Asynchronous Notification with ATAPI devices to detect media status changes.
This allows the host to avoid polling the ATAPI device for media insertion or removal.

When accesses to the ATAPI device are idle, host software should place the device in a low power state.
When the device has a media change, the device will signal this to the host with an asynchronous
notification using the Set Device Bits FIS.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

115

10.11.2 Notifications from Devices Connected to a Port Multiplier

Asynchronous Notification could also be used with a Port Multiplier, particularly when using command-
based switching. A few examples of how this mechanism could be used include indicating media has
been inserted in an ATAPI device connected to the Port Multiplier or indicating that a hot plug event has
occurred on a Port Multiplier port.

In order to utilize asynchronous notification behind a Port Multiplier, the HBA must support the
SNotification register that latches the asynchronous notification events from up to 16 targets. The HBA
indicates support for the SNotification register by setting CAP.SSNT to ‘1’.

10.11.3 Notifications from Other Device Types

Asynchronous Notification is not limited to Port Multipliers and ATAPI devices and may be utilized by
other device types. Host software may utilize Asynchronous Notification for these devices as outlined by
the device manufacture.

10.11.3.1 SNotification Operation

When a FIS is received by the host controller, the first Dword of the FIS contains a 4 bit Port Multiplier
Port (PM Port) field. The PM Port field indicates which port/target behind the Port Multiplier issued the FIS
to the host. When a Set Device Bits FIS is received by the host controller and the ‘N’ (Notification) bit is
set, the bit position in the SNotification register corresponding to the PM Port field is set. The host will set
the PxIS.SDBS bit to “1” if the ‘I’ (Interrupt) bit is set in the Set Device Bits FIS. This will cause an
interrupt to be generated if that interrupt is enabled. Note that when a PM is not present, the PM Port field
in the Set Device Bits FIS will be 0h causing bit 0 of the SNotification register to be set.

When using command-based switching, a received FIS is normally discarded if the PM Port
field does not match the port currently being accessed. However, to support asynchronous
notification from any port behind a Port Multiplier (including the control port), the bit in the SNotification
register will be set and an Set Device Bits FIS interrupt will be generated (if enabled) even when the PM
Port field of a Set Device Bits FIS does not match the port/target currently being accessed if the ‘N’
(Notification) bit is set in the Set Device Bits FIS. If the ‘N’ bit is set and the PM port does not match the
port currently being accessed, then PxIS.IPMS is not set, the FIS is discarded, and PxTFD and PxSACT
are not updated based on the contents of the FIS. If the ‘N’ bit is set and the PM port does match the port
currently being accessed, the Set Device Bits FIS is processed normally (including posting the FIS,
updating PxTFD and PxSACT, etc).

If the ‘N’ (Notification) bit is not set in the Set Device Bits FIS, then the Set Device Bits FIS received is
handled according to normal processing for the Port Multiplier mode (command-based or FIS-based) that
the HBA is operating in.

10.12 Activity LED

An HBA optionally drives an output pin that can be connected to an external LED based upon activity of
the various ports in the HBA. The intended use of this LED is for desktop and mobile systems that
contain only a single LED to indicate device activity. An HBA indicates support for this pin via CAP.SAL.

The intent of this LED output is to replace the DASP functionality that is provided in parallel ATA systems.
The DASP logic in the device would light the LED under the following scenarios:

 During boot, software reset, or device reset: LED would be driven by the slave device on
a cable (if present) to indicate slave presence. The LED would remain on until a
command was written to the slave device, or 30 seconds, whichever comes first.

 During normal operation, while the BSY bit was set in the task file for ATA commands. It
may optionally be on for ATAPI commands (A0h and A1h).

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 116

In AHCI, slave devices are not supported – every device is a master. Therefore, the first LED mechanism
is not supported by an AHCI HBA. An HBA that supports legacy operation will have to consider this
support if it supports master/slave emulation.

To support the second mechanism of LED operation, the HBA shall drive the LED pin active if CAP.SAL
is set, and:

 If (PxCI != 0h or PxSACT != 0h) and PxCMD.ATAPI = ‘0’.

 If (PxCI != 0h or PxSACT != 0h) and PxCMD.ATAPI = ‘1’ and PxCMD.DLAE = ‘1’,

When PxCI and PxSACT are both cleared to 0h the LED shall be driven off.

10.13 BIST

BIST is entered when software builds a BIST FIS in the command list and sets CTBAz[B]. Once a BIST
command is placed into the list, SW is not allowed to build any more commands until it clears PxCMD.ST.

Details of how an HBA operates in the test mode are outside the scope of this specification. A series of
vendor specific tests may be performed using vendor specific registers (such as those in the HBA’s PCI
configuration space). The details of BIST are not defined in AHCI to allow vendors the freedom of
constructing either very elaborate or very light testing schemes.

The test mode is exited when system software clears PxCMD.ST and writes a value of 1h into
PxSCTL.DET. Clearing PxCMD.ST shall put the DMA engines into an idle condition, and writing to
PxSCTL.DET shall reset the interface.

10.14 Index-Data Pair

Index-Data Pair (IDP) provides host software with a mechanism whereby registers implemented in the
AHCI’s memory mapped I/O space (> 1MB) can be read from or written to. On PC based platforms, host
software (BIOS, Option ROMs, OSs) written to operate in ‘real-mode’ (8086 mode) is unable to access
registers in a PCI function’s address space, if the address space is 1) memory mapped and 2) mapped
above 1MB. This is problematic for host software running on an AHCI enabled system when:

 An AHCI implementation does not support legacy access methods

 An AHCI implementation supports legacy access mechanism and also supports > 4 devices
(natively or via Port Multiplier)

The IDP mechanism allows host software to access all of the MMIO AHCI registers using indirect I/O
addressing in lieu of direct memory mapped I/O (MMIO) access via the AHCI Base Address Register
(ABAR).

10.14.1 Rules/Restrictions

While the IDP provides host software with full access to the AHCI’s MMIO registers, there are a few rules
and restrictions that must be followed by both the hardware and host software implementations:

1. When supported, the use of the Index-Data pair by host software shall not be gated by the setting
of the GHC.AE (AHCI Enable); Index-Data pair shall be functional, regardless of the setting of the
AHCI Enable register and shall allow host software full access to the AHCI HBA’s MMIO register
space. However, host software is not permitted to initiate transactions to device(s) attached to
any of the SATA ports implemented by the AHCI HBA, prior to setting the GHC.AE to ‘1’. Host
software’s attempts to access devices attached to the AHCI HBA prior to setting GHC.AE to ‘1’
will result in indeterminate behavior.

2. The Index-Data pair mechanism is intended for use by host software that does not support AHCI
through the AHCI MMIO space. While it is not prohibited for host software (that provides native
AHCI support - e.g. OS device driver) to use IDP, for performance and flexibility reasons, it is
strongly recommended that such software not use IDP; rather the host software should be
designed to use AHCI in a completely native fashion (via ABAR). Host software shall not alternate
between IDP and MMIO access mechanism as this may result in indeterminate behavior.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

117

10.14.2 IDP Index Register Format

The IDP Index register is a Dword (4 bytes) in length and has the following format:

Bit Type Reset Description

31:n+1 RO 0h Reserved

n:2 RW 0h IDP Index: This register selects the Dword offset of the memory
mapped AHCI register to be accessed. The IDP Index should be
sized such that it can access the entire ABAR register space for
the particular implementation

1:0 RO 0h Reserved

10.14.3 IDP Data Register Format

The IDP Data register is a Dword (4 bytes) in length. All register accesses to IDP Data are Dword
granularity. IDP Data has the following format:

Bit Type Reset Description

31:00 RW n/a IDP Data: This register is a “window” through which data is read
or written to the memory mapped register pointed to by the IDP
Index register. Note that a physical register is not actually
implemented as the data is actually stored in the memory
mapped registers.

Since this is not a physical register, the “default” value is the
same as the default value of the register pointed to by IDP Index.

It is the reading or writing of this register by host software that results in action by the AHCI hardware.
Therefore, host software must ensure that the IDP Index register is properly setup prior to the reading or
writing of this register.

10.14.4 Access Mechanism

The following pseudo-code provides an example of how host software designed to use IDP could be
implemented to place the AHCI HBA in AHCI Enabled mode and then proceed to do other AHCI specific
operations. Note that this pseudo-code does not assume any particular instruction set and is provided for
example only.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 118

//

// Assumes that SW found the associated SATA capability ptr/structure and has computed/saved the

// location of the index and data registers

//

Global DWORD IDP_Index // Computed Index register

Global DWORD IDP_Data // Computed Data register

 .

 .

 .

DWORD GHC // Temp storage for current Global HBA control settings

Set IDP_Index, 4 // Offset 04h into AHCI MMIO space is where the Global HBA

 // register resides. We want to perform a read/modified write

 // instruction in order to set the AHCI Enable bit.

Get GHC, IDP_Data // The data register now has the contents of the Global HBA

 // Register. Save it for later restoration.

Set IDP_Data, GHC | 80000000 h // Program the HBA for AHCI mode. Note, because the Index

 // register is already program with the offset to the Global

 // HBA control register, we don’t need to reset it.

//

// AHCI HBA is now enabled for AHCI mode. Host software is now free to use the AHCI. As a further

// example. Let’s clear the global interrupt status register.

//

Set IDP_Index, 8 // Global interrupt status is here

Set IDP_Data, FFFFFFFFh // clear the status register

 .

 . // do other stuff specific to this software

 .

//

// This software is ready to terminate. Assumed that the software has cleaned up any status

// registers, pending interrupts, etc and has placed the HBA in the condition it originally

// found it. Set the AE bit back to what it was as the final step before termination

Set IDP_Index, 4

Set IDP_Data, GHC // back to the way it was

 .

Exit(0) // exit

10.14.5 Index-Data Pair Discovery

Determining whether or not the AHCI HBA supports Index-Data Pair can be accomplished through an
examination of the PCI configuration space. Software should search for the generic SATA capability
pointer in the PCI capability list (see section 2.4), identified by capability identifier 12h. The generic SATA
capability pointer identifies the location of the Index-Data Pair registers. For more information, refer to
section 2.4 which outlines the generic SATA capability pointer as used in AHCI. Additional details are
included in the PCI Engineering Change Notice entitled “Generic Capability Structure for SATA Host Bus
Adapters”, available at www.pcisig.com.

10.15 NVMHCI

10.15.1 NVMHCI Register Support

NVMHCI (Non-Volatile Memory Host Controller Interface) is a register level interface that allows host
software to communicate with a platform non-volatile memory subsystem.

NVMHCI may either be a stand-alone PCI class device or it may be a port within an Advanced Host
Controller Interface (AHCI) device. When NVMHCI is exposed as a port(s) within an AHCI controller, the
NVMCHI Generic Host Control registers shall be exposed in AHCI registers 60h-9Fh.

10.15.2 NVMHCI Generic Host Control under AHCI

This section defines the NVMHCI global registers that exist when NVMHCI is exposed as a port(s) under
an AHCI controller. The presence of these registers is indicated in CAP2.NVMP. If CAP2.NVMP is set to
‘1’, then the registers at ABAR offset 60h to 9Fh are defined as follows:

http://www.pcisig.com/

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

119

Start End Symbol Description

60h 63h CAP Controller Capabilities

64h 67h Reserved Reserved

68h 6Bh Reserved Reserved (Interrupt Status register in AHCI used)

6Ch 6Fh PI Ports Implemented

70h 73h VS Version

74h 9Fh Reserved Reserved

For more information (including register definitions), refer to the NVMHCI reference.

10.16 Automatic Partial to Slumber Transitions

10.16.1 Automatic Partial to Slumber Transitions

The host and/or device may be independently aware of conditions where a transition from Partial to
Slumber would be advantageous for additional power savings. To enable increased power savings,
Automatic Partial to Slumber Transitions defines a capability that allows the Phy to transition to Slumber
from Partial without first entering the Active power state.

Software shall only enable Automatic Partial to Slumber Transitions (setting PxCMD.APSTE to ‘1’) if:

 PxCAP2.APST is set to ‘1’ indicating that the host controller supports Automatic Partial to
Slumber Transitions.

 The device reports support for an increased Partial exit latency in IDENTIFY DEVICE.

For information on Automatic Partial to Slumber Transitions, refer to the Serial ATA reference.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 120

11 Command Completion Coalescing

Command Completion Coalescing (CCC) is a feature designed to reduce the interrupt and command
completion overhead in a heavily loaded system. The feature enables the number of interrupts taken per
completion to be reduced significantly, while ensuring a minimum quality of service for command
completions. When a software specified number of commands have completed or a software specified
timeout has expired, an interrupt is generated by hardware to allow software to process completed
commands. This feature applies to all ports selected to be in the command completion coalescing set by
software via the CCC_PORTS register.

11.1 Command Completion Definition

A command completion has occurred when either of the following occurs on a port selected for command
coalescing:

 (PxCI[x] transitions from ‘1’ to ‘0’) AND (PxSACT[x] = ‘0’)

 PxSACT[x] transitions from ‘1’ to ‘0’

When a command completes the internal HBA variable, hCccComplete, is incremented by one. If
multiple bits transition at the same time and meet one of the preceding criteria, hCccComplete is
incremented once for each bit that satisfies the criteria.

11.2 Timer Definition

An HBA that implements the command completion coalescing shall have an internal timer, hCccTimer,
that is decremented while there are commands outstanding on ports selected for command coalescing.
Commands are outstanding when for any port selected for command coalescing, the value of PxCI or
PxSACT is non-zero. hCccTimer is decremented by 1h every 1 millisecond (the resolution of the software
specified timeout value).

11.3 Selected Ports

A subset of the implemented ports, as defined by the Ports Implemented (PI) register, may be specified
for use with the command completion coalescing feature. The subset is defined by the bit-significant
register CCC_PORTS. If a bit is set to ‘1’ in CCC_PORTS and the same bit is also set to ‘1’ in PI, then
that port is selected to be included in command completion coalescing.

The CCC_PORTS value may be updated at any time by software. However, if there are outstanding
commands on any ports at the time CCC_PORTS is updated, the HBA may not immediately adjust to
ports that have just been selected or deselected. For example, if a command is in progress on a
particular port and the command is about to complete near the same moment that CCC_PORTS is
updated to newly select this port, the HBA may not increment hCccComplete. An updated CCC_PORTS
value is guaranteed to be in effect within 1 millisecond of the write to the CCC_PORTS register.

If a port is currently selected for command completion coalescing and an error occurs that requires
PxCMD.ST to be cleared to ‘0’, software shall remove the affected port from the selected ports for
command completion coalescing prior to clearing PxCMD.ST to ‘0’.

11.4 Interrupt Definition

The command coalescing completion interrupt, called the ‘CCC interrupt’, is generated on any of the
following conditions:

 hCccComplete is greater than or equal to the value specified by software in CCC_CTL.CC and
CCC_CTL.CC != 0.

 hCccTimer is decremented to 0h. (The interrupt is generated on the decrement to 0h, not the
decrement from 0h to -1.)

 hCccComplete is incremented and there are no more commands outstanding on the selected
ports for command completion coalescing and CCC_CTL.CC != 0.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

121

When the CCC interrupt is generated, hCccComplete is reset to 0h and hCccTimer is reset to the
software specified timeout value in CCC_CTL.TV. If commands complete on the same cycle that
hCccComplete is to be reset to 0h, the final value of hCccComplete shall be 0h after that cycle. These
additional completions are “aggregated” into the current CCC interrupt that is being generated. The CCC
interrupt utilizes the Interrupt Status (IS) register bit specified in CCC_CTL.INT. The CCC interrupt shall
also use the MSI vector that corresponds to CCC_CTL.INT. The CCC interrupt corresponds to the
interrupt for an unimplemented port on the controller.

11.5 Enable and Disable Behavior

The CCC feature is only in use when CCC_CTL.EN is set to ‘1’. If CCC_CTL.EN is set to ‘0’, no CCC
interrupts shall be generated.

On transition of CCC_CTL.EN from ‘0’ to ‘1’, the following shall occur:

 HBA uses the Timeout Value specified in the CCC_CTL.TV field

 HBA uses the Command Completions value specified in the CCC_CTL.CC field

 hCccTimer is reset to CC_CTL.TV

 hCccComplete is reset to 0h

Software shall not modify the values in CCC_CTL.TV nor CCC_CTL.CC while CCC_CTL.EN is set to ‘1’.
Writing these values while command completion coalescing is enabled will result in indeterminate
behavior.

11.6 Software Behavior

11.6.1 Initialization

To initialize use of the command completion coalescing feature for a set of ports, software needs to
perform several steps.

 Software should turn off per port interrupts for the D2H Register FIS and the Set Device Bits FIS
(clear PxIE.DHRE and PxIE.SDBE to ‘0’) for each port that will be part of command completion
coalescing.

 Software should turn on per port interrupts for hot plug and error events. These events should be
handled on a per port basis.

 Software should ensure that CCC_CTL.EN is cleared to ‘0’.

 Software should set CCC_PORTS to the desired value based on which ports should be part of
the command completion coalescing set. Note that software shall only set a bit in the
CCC_PORTS register if the corresponding bit is set in the Ports Implemented (PI) register.

 Software should set CCC_CTL.TV and CCC_CTL.CC to the desired values.

 Software should enable command completion coalescing by setting CCC_CTL.EN to ‘1’.

After enabling command completion coalescing, software should check if any commands have completed
on any port while performing the initialization. Software can do this by checking the PxCI (non-queued
commands) or PxSACT (native queued commands) register for each port whose corresponding bit is set
to ‘1’ in CCC_PORTS.

11.6.2 Errors and Hot Plug Events

Note that error and hot plug events are handled on a per port basis, so the corresponding per port enable
(PxIE) bits are set to ‘1’. When an error or hot plug event occurs, software should remove that port from
the command completion coalescing set by updated CCC_PORTS. This change will take effect within 1
millisecond. Then software should service the error or hot plug event. After the port is again functional,
software may add the port to the command completion coalescing set by updating CCC_PORTS.
CCC_CTL.EN may be set to ‘1’ when a port is added to or removed from the command completion
coalescing set.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 122

11.6.3 CCC Interrupt Handling

Upon detecting that a CCC interrupt has occurred, software should perform the following steps in order.

 Software should clear the CCC interrupt by writing a ‘1’ to bit location IS.IPS[CCC_CTL.INT].
Note that this step is not required if multiple MSI messaging is in use.

 Software should query the PxCI (for non-queuing commands) and PxSACT (for native queued
commands) registers to determine the commands that have been completed.

 Software should complete commands finished commands to the OS that were identified in the
previous step.

11.6.4 Updating Timeout Value or Number of Command Completions

Software during the course of operation may choose to update the timeout value or the number of
command completions required before causing the CCC interrupt based on implementation specific
algorithms. To update these values, software should perform the following procedure:

 Software should clear CCC_CTL.EN to ‘0’

 Software should update CCC_CTL.TV (timeout value) and CCC_CTL.CC (number of command
completions) as desired

 Software should set CCC_CTL.EN to ‘1’

Software shall not modify the values in CCC_CTL.TV nor CCC_CTL.CC while CCC_CTL.EN is set to ‘1’.
Writing these values while command completion coalescing is enabled will result in indeterminate
behavior.

While command completion coalescing was disabled, additional commands may have completed on
those ports that are part of the command completion coalescing set. After re-enabling command
completion coalescing, software should check if any commands have completed on any port while
performing the initialization. Software can do this by checking the PxCI (non-queued commands) or
PxSACT (native queued commands) register for each port whose corresponding bit is set to ‘1’ in
CCC_PORTS.

11.7 Example (Informative)

This section describes an example scenario of commands completing on multiple ports when command
completion coalescing is used. This example is meant to illustrate core concepts of command completion
coalescing.

Software selects ports 2, 4, and 5 to be in the command completion set by writing CCC_PORTS =
00000034h. The CCC_CTL.TV value is set by software to 5000 to ensure that a CCC interrupt is
generated at least every 5 seconds to ensure that completed commands are not timed out at a higher
level by the OS. The CCC_CTL.CC value is set to 5 by software to cause a CCC interrupt after 5 total
commands have completed among ports 2, 4, and 5. Software has selected the value of 5 based on the
current amount of traffic being seen on ports 2, 4, and 5 and based on quality of service requirements.
After setting the CCC_CTL.TV and CCC_CTL.CC values appropriately, software enables CCC by setting
CCC_CTL.EN to ‘1’.

Software receives three commands to issue for port 2. These commands are issued in a non-queued
fashion and the resulting P2CI value is 00000015h (commands are issued in slots 0, 2, and 4) and
P2SACT is 0h. Software receives two commands to issue for port 5. These commands are issued as
NCQ commands and the resulting P5SACT value is 00010100h (commands are issued with tags 8 and
16). At this point, hCccTimer has decremented to 4700 (300 milliseconds have elapsed since
CCC_CTL.EN was set to ‘1’) and hCccComplete is still 0h.

The drive attached to port 2 completes command 0 and P2CI is updated to be 00000014h. When bit 0 of
P2CI transitions from ‘1’ to ‘0’ the hCccComplete variable will be incremented to 1h since P2SACT bit 0 is
also cleared to ‘0’. Next the drive attached to port 5 completes both commands and P5SACT is updated
to be 0h. When bits 8 and 16 transition from ‘1’ to ‘0’, hCccComplete will be incremented by 2 to a value
of 3h. The hCccComplete variable is incremented once for each command that completes; note that
when PxSACT bits transition from ‘1’ to ‘0’ there is no qualification on the values of the PxCI register for

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

123

incrementing hCccComplete. At this point, hCccTimer has decremented to 4200 and hCccComplete is
3h.

Software receives three more commands for port 5. These commands are issued as NCQ commands
and the resulting P5SACT value is 00700000h (commands are issued with tags 20, 21, and 22). At this
point, no more commands have been completed so hCccComplete remains set to 3h while hCccTimer
has continued to decrement to 4000.

The drive attached to port 5 completes the command with tag 22. P5SACT is updated to be 00300000h.
When bit 22 transitions from ‘1’ to ‘0’, hCccComplete will be incremented by 1 to a value of 4h.

The drive attached to port 2 completes the command in slot 2. P2CI is updated to be 00000010h. When
bit 2 transitions from ‘1’ to ‘0’, hCccComplete will be incremented by 1 to a value of 5h since P2SACT bit
2 is also cleared to ‘0’. At his point, hCccTimer has decremented to 3500 and hCccComplete is 5h.

When hCccComplete is incremented to 5h (or greater if multiple commands had completed in the same
cycle), the hardware will recognize that the number of commands completed has reached the
CCC_CTL.CC threshold. Hardware will then clear hCccComplete to 0h, set hCccTimer to CCC_CTL.TV,
and then set IS.IPS[CCC_CTL.INT] to ‘1’. If interrupts are enabled (GHC.IE = ‘1’), the HBA will then
generate an interrupt to software.

After this interrupt is generated to software, the process continues and hCccComplete will start
incrementing again based on completions, while hCccTimer will continue to decrement as time elapses.

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 124

12 Enclosure Management

Enclosure management is a mechanism by which the storage driver can monitor and control auxiliary
services in a drive enclosure. The most common task is controlling LEDs that show per drive status
information. LEDs per drive could include device activity, fault (to indicate a failure), and locate (to show
an operator the bay to remove/insert a drive from/into). Note that device activity indications may be
provided by the device itself. Other examples of enclosure management features include: power supply
control and monitoring, temperature monitoring, and presence detection.

There are three common enclosure management protocols in use: SAF-TE, SES-2 and SGPIO.
References to these specifications are in section 1.9. These protocols are typically used between the
host controller (or Port Multiplier) and an enclosure processor that controls/monitors the sensors/LEDs
within the enclosure.

To use the SAF-TE or SES-2 protocols, the HBA must communicate with a storage enclosure processor
(SEP) that supports the desired protocol. The physical bus that attaches the HBA to the SEP is I

2
C; note

that this requires additional pins to be added to the HBA. The IPMI protocol is used over I
2
C to

communicate with the SEP. The Serial ATA Revision 2.6 specification contains details on how SAF-TE
and SES-2 packets are exchanged with a SEP.

To use the SGPIO protocol, the HBA communicates with an SGPIO target. The 4 pin bus that attaches
the HBA to the SGPIO target is defined in the SGPIO specification.

12.1 Mechanism

Enclosure management involves sending messages that control features of the enclosure or receiving
messages that provide status for the enclosure. The messages for this function are stored after the
normal registers in the AHCI BAR, at an implementation specific offset from the beginning of the AHCI
BAR as specified by the EM_LOC global register.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

125

Figure 25: Enclosure Management Buffer Location

ABAR

Port 0

Port 1

Port n

Memory

Registers

...

100h

Reserved

Generic Host

Control

00h

24h

Config

Registers

Vendor

Specific

A0h

180h

100h + (n*80h)

200h

Enclosure

Management

Buffer

EM_LOC.OFST*4

(EM_LOC.OFST*4)

+ EM_LOC.SZ

Software creates messages for transmission in the enclosure management message buffer. Software
then writes a register to cause hardware to transmit the message or take appropriate action based on the
message content. Message types that software can create include LED, SAF-TE, SES-2, and SGPIO
messages. Software shall only create messages for message types that hardware indicates support for.

Software shall not change the contents of the message buffer after it has requested that hardware
transmit that buffer until hardware acknowledges that the transmission is complete.

12.2 Message Format

Messages shall be constructed with a one Dword header that describes the message to be sent followed
by the actual message contents. The first Dword shall be constructed as follows:

Bit Description

31:28 Reserved

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 126

27:24

Message Type (MTYPE): Specifies the type of the message.

The message types are:

 0h – LED

 1h – SAF-TE

 2h – SES-2

 3h – SGPIO (register based interface)

 All other values reserved

23:16

Data Size (DSIZE): Specifies the data size in bytes. If the message (enclosure services

command) has a data buffer that is associated with it that is transferred, the size of that
data buffer is specified in this field. If there is no separate data buffer, this field shall
have a value of ‘0’. The data directly follows the message in the message buffer.

15:8
Message Size (MSIZE): Specifies the size of the message in bytes. The message size

does not include the one Dword header. A value of ‘0’ is invalid.

7:0 Reserved

The SAF-TE, SES-2, and SGPIO message formats are defined in the corresponding specifications,
respectively. The LED message type is defined in section 12.2.1.

12.2.1 LED message type

The LED message type specifies the status of up to three LEDs. Typically, the usage for these LEDs is
activity, fault, and locate. Not all implementations necessarily contain all LEDs (for example, some
implementations may not have a locate LED). The message identifies the HBA port number and the Port
Multiplier port number that the slot status applies to. If a Port Multiplier is not in use with a particular
device, the Port Multiplier port number shall be ‘0’. The format of the LED message type is defined in the
following table. The LEDs shall retain their state until there is a following update for that particular slot.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

127

Byte Description

2-3

Value (VAL): This field describes the state of each LED for a particular location. There

are three LEDs that may be supported by the HBA. Each LED has 3 bits of control.
LED values are:

000b – LED shall be off
001b – LED shall be solid on as perceived by human eye
010b – Reserved
011b – Reserved
100b – Vendor specific
101b – Vendor specific
110b – Vendor specific
111b – Vendor specific
All other values reserved

The LED bit locations are:

Bits 2:0 – Activity LED (may be driven by hardware)
Bits 5:3 – Vendor Specific LED (e.g. locate)
Bits 8:6 – Vendor Specific LED (e.g. fault)
Bits 15:9 – Reserved

1

Port Multiplier Information: Specifies slot specific information related to Port Multiplier.

Bits 3:0 specify the Port Multiplier port number for the slot that requires the status
update. If a Port Multiplier is not attached to the device in the affected slot, the Port
Multiplier port number shall be 0h. Bits 7:4 are reserved.

0

HBA Information: Specifies slot specific information related to the HBA.

Bits 4:0 – HBA port number for the slot that requires the status update.
Bit 5 – If set to ‘1’, Value is a vendor specific message that applies to the entire
enclosure. When set to ‘1’, bits 4:0 of HBA Information is ignored and not used.
If cleared to ‘0’, Value applies to the port specified in bits 4:0.
Bits 7:6 – Reserved

12.2.2 SAF-TE message type

SAF-TE is an enclosure services protocol that uses the SCSI command set as a basis. The two primary
SCSI commands used for SAF-TE are READ BUFFER and WRITE BUFFER. Each of these commands
has several subcommands defined for controlling the SEP and monitoring status of the enclosure.

The SAF-TE message type sent to a storage enclosure processor (SEP) is in the form of a SCSI CDB
since each SAF-TE message is a SCSI command. Each CDB begins with a one byte SCSI opcode.

Some SAF-TE commands have a data buffer that is associated with the command. For example, WRITE
BUFFER has a data buffer that is written to the SEP to instruct the SEP on the exact actions to be taken.
This data shall immediately follow the CDB of the associated command in the message buffer. The size
of the CDB for the SAF-TE command is specified in the MSIZE field in the message header. The size of
the data buffer for the SAF-TE command is specified in the DSIZE field in the message header.

For more information on SAF-TE commands and associated subcommands, see the SAF-TE reference.

12.2.3 SES-2 message type

SES-2 is an enclosure services protocol that uses the SCSI command set as a basis. The two primary
SCSI commands used for SES-2 are RECEIVE DIAGNOSTIC RESULTS and SEND DIAGNOSTIC.
Each of these commands has associate diagnostic parameter and diagnostic status formats for
controlling the SEP and monitoring status of the enclosure.

The SES-2 message type sent to a storage enclosure processor (SEP) is in the form of a SCSI CDB
since each SES-2 message is a SCSI command. Each CDB begins with a one byte SCSI opcode.

Some SES-2 commands have a data buffer that is associated with the command. For example, SEND
DIAGNOSTIC has a set of diagnostic parameters that are written to the SEP to instruct the SEP on the

AHCI 1_3_1.doc Serial ATA AHCI 1.3.1 Specification

 128

exact actions to be taken. This data shall immediately follow the CDB of the associated command in the
message buffer. The size of the CDB for the SES-2 command is specified in the MSIZE field in the
message header. The size of the data buffer for the SES-2 command is specified in the DSIZE field in
the message header.

For more information on SES-2 commands and diagnostic parameters/formats, see the SES-2 reference.

Serial ATA AHCI 1.3.1 Specification AHCI 1_3_1.doc

129

13 Informative Appendix

13.1 Port Selector Support

A Port Selector may be attached to an HBA port. To control the Port Selector with protocol-based port
selection, software should issue COMRESET bursts at the appropriate intervals by using the PxSCTL
register appropriately. Controlling the Port Selector with side-band port selection is beyond the scope of
this specification.

13.2 Legacy ATAPI Device Seek Complete Behavior

DSC (Device Seek Complete) was introduced in the ATA/3 specification and defined as bit 4 of the Status
register. ATAPI devices began using this bit soon after. In the ATA/4 specification the DSC bit was made
command specific and by the ATA/5 specification DSC was no longer used as part of any ATA
commands.

The intention of the DSC bit was to allow for a device to drop BSY and DRQ and indicate command
completion some time later by setting the DSC bit. Dropping BSY and DRQ allowed the bus to be free
and commands could be issued to the other device (in a master/slave configuration). With the
introduction of SATA (with a dedicated device/host connection) there is no benefit to the DSC behavior.

Serial ATA is based on the ATA/5 specification. Thus, Serial ATA has no concept of DSC. By extension,
as the programming interface for Serial ATA, AHCI has no concept of DSC as a mechanism for
completing an ATAPI command. In addition, AHCI is designed to be command agnostic and require no
snooping of actual ATA opcodes for extensibility. AHCI hardware has no specific knowledge of DSC or
commands that make use of this bit. AHCI assumes command completion when BSY and DRQ (no
errors) are lowered by the device via a Device-to-Host Register FIS. Under this condition an AHCI
controller will de-assert the PxCI bit associated with the command and proceed to process the next
command slot.

Older parallel ATAPI devices may continue to use the DSC bit as it was originally intended and may be
used in conjunction with PATA-to-SATA bridges. Observed behavior with these devices for some
commands may include clearing the BSY and DRQ bits immediately and then sometime later issuing a
Set Device Bits FIS to update DSC to ‘1’ in order to indicate command completion. In this case the AHCI
controller will indicate completion when BSY and DRQ are lowered, update PxCI, and move on to the
next command (possibly before the device actually completed the initial command).

In order to avoid issues with legacy based ATAPI devices that use the DSC bit in this manner, software
may be modified to poll on DSC for completion of the impacted commands. A bridged ATAPI device may
be identified by checking that Word 76 in IDENTIFY PACKET DEVICE is 0000h or FFFFh.

The following is a list of MMC commands that may use DSC as described above:

– 2Bh - Seek (10)

– 45h - Play Audio (10)

– 47h - Play Audio MSF

– A5h - Play Audio (12)

– BAh – Scan

– BCh - Play CD

	1 Introduction
	1.1 Overview
	1.2 Scope
	1.3 Outside of Scope
	1.4 Block Diagram
	1.5 Conventions
	1.6 Definitions
	1.6.1 active command slot
	1.6.2 command list
	1.6.3 command slot
	1.6.4 cs
	1.6.5 D2H
	1.6.6 device
	1.6.7 FIS
	1.6.8 H2D
	1.6.9 HBA
	1.6.10 n/a
	1.6.11 port
	1.6.12 PRD
	1.6.13 queue
	1.6.14 register memory
	1.6.15 Task File
	1.6.16 system memory

	1.7 Theory of Operation
	1.8 Interaction with Legacy Software
	1.9 References

	2 HBA Configuration Registers
	2.1 PCI Header
	2.1.1 Offset 00h: ID - Identifiers
	2.1.2 Offset 04h: CMD - Command
	2.1.3 Offset 06h: STS - Device Status
	2.1.4 Offset 08h: RID - Revision ID
	2.1.5 Offset 09h: CC - Class Code
	2.1.6 Offset 0Ch: CLS – Cache Line Size
	2.1.7 Offset 0Dh: MLT – Master Latency Timer
	2.1.8 Offset 0Eh: HTYPE – Header Type
	2.1.9 Offset 0Fh: BIST – Built In Self Test (Optional)
	2.1.10 Offset 10h – 20h: BARS – Other Base Addresses (Optional)
	2.1.11 Offset 24h: ABAR – AHCI Base Address
	2.1.12 Offset 2Ch: SS - Sub System Identifiers
	2.1.13 Offset 30h: EROM – Expansion ROM (Optional)
	2.1.14 Offset 34h: CAP – Capabilities Pointer
	2.1.15 Offset 3Ch: INTR - Interrupt Information
	2.1.16 Offset 3Eh: MGNT – Minimum Grant (Optional)
	2.1.17 Offset 3Fh: MLAT – Maximum Latency (Optional)

	2.2 PCI Power Management Capabilities
	2.2.1 Offset PMCAP: PID - PCI Power Management Capability ID
	2.2.2 Offset PMCAP + 2h: PC – PCI Power Management Capabilities
	2.2.3 Offset PMCAP + 4h: PMCS – PCI Power Management Control And Status

	2.3 Message Signaled Interrupt Capability (Optional)
	2.3.1 Offset MSICAP: MID – Message Signaled Interrupt Identifiers
	2.3.2 Offset MSICAP + 2h: MC – Message Signaled Interrupt Message Control
	2.3.3 Offset MSICAP + 4h: MA – Message Signaled Interrupt Message Address
	2.3.4 Offset MSICAP + (8h or Ch): MD – Message Signaled Interrupt Message Data
	2.3.5 Offset MSICAP + 8h: MUA – Message Signaled Interrupt Upper Address (Optional)

	2.4 Serial ATA Capability (Optional)
	2.4.1 Offset SATACAP: SATACR0 – Serial ATA Capability Register 0
	2.4.2 Offset SATACAP + 4h: SATACR1 – Serial ATA Capability Register 1

	2.5 Other Capability Pointers

	3 HBA Memory Registers
	3.1 Generic Host Control
	3.1.1 Offset 00h: CAP – HBA Capabilities
	3.1.2 Offset 04h: GHC – Global HBA Control
	3.1.3 Offset 08h: IS – Interrupt Status Register
	3.1.4 Offset 0Ch: PI – Ports Implemented
	3.1.5 Offset 10h: VS – AHCI Version
	3.1.5.1 VS Value for 0.95 Compliant HBAs
	3.1.5.2 VS Value for 1.0 Compliant HBAs
	3.1.5.3 VS Value for 1.1 Compliant HBAs
	3.1.5.4 VS Value for 1.2 Compliant HBAs
	3.1.5.5 VS Value for 1.3 Compliant HBAs
	3.1.5.6 VS Value for 1.3.1 Compliant HBAs

	3.1.6 Offset 14h: CCC_CTL – Command Completion Coalescing Control
	3.1.7 Offset 18h: CCC_PORTS – Command Completion Coalescing Ports
	3.1.8 Offset 1Ch: EM_LOC – Enclosure Management Location
	3.1.9 Offset 20h: EM_CTL – Enclosure Management Control
	3.1.10 Offset 24h: CAP2 – HBA Capabilities Extended
	3.1.11 Offset 28h: BOHC – BIOS/OS Handoff Control and Status

	3.2 Vendor Specific Registers
	3.3 Port Registers (one set per port)
	3.3.1 Offset 00h: PxCLB – Port x Command List Base Address
	3.3.2 Offset 04h: PxCLBU – Port x Command List Base Address Upper 32-bits
	3.3.3 Offset 08h: PxFB – Port x FIS Base Address
	3.3.4 Offset 0Ch: PxFBU – Port x FIS Base Address Upper 32-bits
	3.3.5 Offset 10h: PxIS – Port x Interrupt Status
	3.3.6 Offset 14h: PxIE – Port x Interrupt Enable
	3.3.7 Offset 18h: PxCMD – Port x Command and Status
	3.3.8 Offset 20h: PxTFD – Port x Task File Data
	3.3.9 Offset 24h: PxSIG – Port x Signature
	3.3.10 Offset 28h: PxSSTS – Port x Serial ATA Status (SCR0: SStatus)
	3.3.11 Offset 2Ch: PxSCTL – Port x Serial ATA Control (SCR2: SControl)
	3.3.12 Offset 30h: PxSERR – Port x Serial ATA Error (SCR1: SError)
	3.3.13 Offset 34h: PxSACT – Port x Serial ATA Active (SCR3: SActive)
	3.3.14 Offset 38h: PxCI – Port x Command Issue
	3.3.15 Offset 3Ch: PxSNTF – Port x Serial ATA Notification (SCR4: SNotification)
	3.3.16 Offset 40h: PxFBS: Port x FIS-based Switching Control
	3.3.17 Offset 44h: PxDEVSLP – Port x Device Sleep
	3.3.18 Offset 70h to 7Fh: PxVS – Vendor Specific

	4 System Memory Structures
	4.1 HBA Memory Space Usage
	4.2 Port Memory Usage
	4.2.1 Received FIS Structure
	4.2.2 Command List Structure
	4.2.3 Command Table
	4.2.3.1 Command FIS (CFIS)
	4.2.3.2 ATAPI Command (ACMD)
	4.2.3.3 Physical Region Descriptor Table (PRDT)

	5 Data Transfer Operation
	5.1 Introduction
	5.2 HBA Controller State Machine (Normative)
	5.2.1 Variables
	5.2.2 HBA Idle States
	5.2.2.1 H:Init
	5.2.2.2 H:WaitForAhciEnable
	5.2.2.3 H:Idle
	5.2.2.4 Ccc:Enable
	5.2.2.5 Ccc:TimerDecrement
	5.2.2.6 Ccc:SetIS
	5.2.2.7 Ccc:GenIntr
	5.2.2.8 Em:Reset
	5.2.2.9 Em:MsgRecv
	5.2.2.10 Em:MsgXmit

	5.3 HBA Port State Machine (Normative)
	5.3.1 Variables
	5.3.2 Port Idle States
	5.3.2.1 P:Reset
	5.3.2.2 P:Init
	5.3.2.3 P:NotRunning
	5.3.2.4 P:ComInit
	5.3.2.5 P:ComInitSetIS
	5.3.2.6 P:ComInitGenIntr
	5.3.2.7 P:RegFisUpdate
	5.3.2.8 P:RegFisPostToMem
	5.3.2.9 P:Offline
	5.3.2.10 P:StartBitCleared
	5.3.2.11 P:Idle
	5.3.2.12 P:SelectCmd
	5.3.2.13 P:FetchCmd
	5.3.2.14 P:StartComm
	5.3.2.15 P:PowerOn
	5.3.2.16 P:PowerOff
	5.3.2.17 P:PhyListening

	5.3.3 FIS-based Switching Specific States
	5.3.3.1 FB:Idle
	5.3.3.2 FB:SelectDevice
	5.3.3.3 FB:SelectCmd
	5.3.3.4 FB:FetchCmd
	5.3.3.5 FB:SingleDeviceError
	5.3.3.6 FB:SDE_Cleanup

	5.3.4 Power Management States
	5.3.4.1 PM:Aggr
	5.3.4.2 PM:ICC
	5.3.4.3 PM:Partial
	5.3.4.4 PM:Slumber
	5.3.4.5 PM:LowPower
	5.3.4.6 PM:DevSleep
	5.3.4.7 PM:WakeLink

	5.3.5 Non-Data FIS Receive States
	5.3.5.1 NDR:Entry
	5.3.5.2 NDR:PmCheck
	5.3.5.3 NDR:Accept

	5.3.6 Command Transfer States
	5.3.6.1 CFIS:SyncEscape
	5.3.6.2 CFIS:Xmit
	5.3.6.3 CFIS:Success
	5.3.6.4 CFIS:ClearCI
	5.3.6.5 CFIS:Ccc
	5.3.6.6 CFIS:PrefetchACMD
	5.3.6.7 CFIS:PrefetchPRD
	5.3.6.8 CFIS:PrefetchData

	5.3.7 ATAPI Command Transfer States
	5.3.7.1 ATAPI:Entry

	5.3.8 D2H Register FIS Receive States
	5.3.8.1 RegFIS:Entry
	5.3.8.2 RegFIS:ClearCI
	5.3.8.3 RegFIS:Ccc
	5.3.8.4 RegFIS:SetIntr
	5.3.8.5 RegFIS:SetIS
	5.3.8.6 RegFIS:GenIntr
	5.3.8.7 RegFIS:UpdateSig
	5.3.8.8 RegFIS:SetSig

	5.3.9 PIO Setup Receive States
	5.3.9.1 PIO:Entry
	5.3.9.2 PIO:Update
	5.3.9.3 PIO:ClearCI
	5.3.9.4 PIO:Ccc
	5.3.9.5 PIO:SetIntr
	5.3.9.6 PIO:SetIS
	5.3.9.7 PIO:GenIntr

	5.3.10 Data Transmit States
	5.3.10.1 DX:Entry
	5.3.10.2 DX:Transmit
	5.3.10.3 DX:UpdateByteCount
	5.3.10.4 DX:PrdSetIntr
	5.3.10.5 DX:PrdSetIS
	5.3.10.6 DX:PrdGenIntr

	5.3.11 Data Receive States
	5.3.11.1 DR:Entry
	5.3.11.2 DR:Receive
	5.3.11.3 DR:UpdateByteCount

	5.3.12 DMA Setup Receive States
	5.3.12.1 DmaSet:Entry
	5.3.12.2 DmaSet:SetIntr
	5.3.12.3 DmaSet:SetIS
	5.3.12.4 DmaSet:GenIntr
	5.3.12.5 DmaSet:AutoActivate

	5.3.13 Set Device Bits States
	5.3.13.1 SDB:Entry
	5.3.13.2 SDB:Notification
	5.3.13.3 SDB:SetIntr
	5.3.13.4 SDB:Ccc
	5.3.13.5 SDB:SetIS
	5.3.13.6 SDB:GenIntr

	5.3.14 Unknown FIS Receive States
	5.3.14.1 UFIS:Entry
	5.3.14.2 UFIS:SetIS
	5.3.14.3 UFIS:GenIntr

	5.3.15 BIST States
	5.3.15.1 BIST:FarEndLoopback
	5.3.15.2 BIST:TestOngoing

	5.3.16 Error States
	5.3.16.1 ERR:IPMS
	5.3.16.2 ERR:SyncEscapeRecv
	5.3.16.3 ERR:SyncEscapeFbNd
	5.3.16.4 ERR:Fatal
	5.3.16.5 ERR:FatalTaskfile
	5.3.16.6 ERR:WaitForClear
	5.3.16.7 ERR:Non-Fatal

	5.4 HBA Rules (Normative)
	5.4.1 PRD Byte Count Updates
	5.4.1.1 Data FIS Odd Word Transfers

	5.4.2 PRD Interrupt

	5.5 System Software Rules (Normative)
	5.5.1 Basic Steps when Building a Command
	5.5.2 Setting CH(pFreeSlot).P
	5.5.3 Processing Completed Commands

	5.6 Transfer Examples (Informative)
	5.6.1 Macro States
	5.6.2 DMA Data Transfers
	5.6.2.1 ATA DMA Write
	5.6.2.2 ATAPI Packet DMA Write
	5.6.2.3 ATA DMA Read
	5.6.2.4 ATAPI Packet DMA Read

	5.6.3 PIO Data Transfers
	5.6.3.1 ATA PIO Write
	5.6.3.2 ATAPI Packet PIO Write
	5.6.3.3 ATA PIO Read
	5.6.3.4 ATAPI Packet PIO Read

	5.6.4 Native Queued Command Transfers
	5.6.4.1 Introduction
	5.6.4.2 Example
	5.6.4.3 NCQ Unload (Informative)

	5.6.5 FIS-based Switching Command Transfers
	5.6.5.1 Introduction
	5.6.5.2 Example

	6 Error Reporting and Recovery
	6.1 Error Types
	6.1.1 System Memory Errors
	6.1.2 Interface Errors
	6.1.3 Port Multiplier Errors
	6.1.4 Taskfile Errors
	6.1.5 Command List Overflow
	6.1.6 Command List Underflow
	6.1.7 PIO Data Transfer Errors
	6.1.8 SYNC Escape by device
	6.1.9 Device responds to FIS with R_ERR
	6.1.10 CRC error in received FIS
	6.1.11 D2H FIS received without active command slot

	6.2 Error Recovery
	6.2.1 HBA Aborting a Transfer
	6.2.2 Software Error Recovery
	6.2.2.1 Non-Queued Error Recovery
	6.2.2.2 Native Command Queuing Error Recovery
	6.2.2.3 Recovery of Unsolicited COMINIT

	7 Hot Plug Operation
	7.1 Platforms that Support Cold Presence Detect
	7.1.1 Device Hot Unplugged
	7.1.2 Device Hot Plugged

	7.2 Platforms that Support Mechanical Presence Switches.
	7.3 Native Hot Plug Support
	7.3.1 Hot Plug Removal Detection and Power Management Interaction (Informative)
	7.3.1.1 Software Flow for Hot Plug Removal Detection (Informative)
	7.3.1.2 Software Flow for Power Management (Informative)

	7.4 Interaction of the Command List and Port Change Status

	8 Power Management Operation
	8.1 Introduction
	8.2 Power State Mappings
	8.3 Power State Transitions
	8.3.1 Interface Power Management
	8.3.1.1 Device Initiated
	8.3.1.2 System Software Initiated
	8.3.1.3 HBA Initiated
	8.3.1.4 Software Requirements and Precedence

	8.3.2 Device D1, D2, and D3 States
	8.3.3 HBA D3 state

	8.4 PME
	8.5 Device Sleep (DEVSLP) Feature
	8.5.1 Aggressive Device Sleep Management
	8.5.2 DEVSLP Idle Timeout
	8.5.3 Software Initiated DEVSLP
	8.5.4 Exiting from DevSleep
	8.5.5 Device Sleep and Automatic Partial to Slumber Transition Support
	8.5.6 Device Sleep and Mechanical Interlock Switch Support

	9 Port Multiplier Support
	9.1 Command Based Switching
	9.1.1 Non-Queued Operation
	9.1.2 Queued Operation

	9.2 Port Multiplier Enumeration
	9.3 FIS-based Switching
	9.3.1 Configuration
	9.3.1.1 PxFBS Control Register Details
	9.3.1.1.1 Enable
	9.3.1.1.2 Device Error Clear
	9.3.1.1.3 Device To Issue
	9.3.1.1.4 Active Device Optimization
	9.3.1.1.5 Command Issue
	9.3.1.1.5.1 Non-queued Commands
	9.3.1.1.5.2 Native Queued Commands

	9.3.2 Command Ordering
	9.3.3 FIS Receive Area
	9.3.4 DMA Context
	9.3.5 Data FIS transfers to the device – locking the interface
	9.3.6 Error Handling
	9.3.6.1 Error Recovery from Device Specific Errors
	9.3.6.2 Error Recovery from Non-Device Specific Errors
	9.3.6.3 Incorrect Port Multiplier Status

	9.3.7 PxTFD Register Information
	9.3.8 SYNC Escape and setting the ‘R’ bit in Command Headers
	9.3.9 FIS-based switching and Device Enumeration

	10 Platform Communication
	10.1 Software Initialization of HBA
	10.1.1 Firmware Specific Initialization
	10.1.2 System Software Specific Initialization

	10.2 Hardware Prerequisites to Enable/Disable GHC.AE
	10.3 Software Manipulation of Port DMA Engines
	10.3.1 Start (PxCMD.ST)
	10.3.2 FIS Receive Enable (PxCMD.FRE)

	10.4 Reset
	10.4.1 Software Reset
	10.4.2 Port Reset
	10.4.3 HBA Reset

	10.5 Interface Speed Support
	10.6 BIOS/OS Handoff Mechanism
	10.6.1 Default / reset state
	10.6.2 BIOS declares ownership request
	10.6.3 OS declares ownership request
	10.6.4 BIOS releases ownership

	10.7 Interrupts
	10.7.1 Tiered Operation
	10.7.1.1 First Tier (IS Register)
	10.7.1.2 Second Tier (PxIS Registers)

	10.7.2 HBA/SW Interaction
	10.7.2.1 Pin Based and Single MSI Message Based Behavior
	10.7.2.2 Multiple MSI Based Messages
	10.7.2.3 Multiple MSI When Fewer Messages Allocated Than Requested
	10.7.2.3.1 Sharing Last Message
	10.7.2.3.2 Reverting to Single MSI Mode

	10.7.3 Disabling Device Interrupts (NIEN Bit in Device Control Register)

	10.8 Mechanical Presence Switch Operation
	10.9 Cold Presence Detect Operation
	10.10 Staggered Spin-up Operation
	10.10.1 Interaction of PxSCTL.DET and PxCMD.SUD
	10.10.2 Spin-Up Procedure (Informative)
	10.10.3 Preparing for Low Power System State (Informative)
	10.10.4 When to Enter Listen Mode (Informative)

	10.11 Asynchronous Notification
	10.11.1 Notifications from ATAPI Devices
	10.11.2 Notifications from Devices Connected to a Port Multiplier
	10.11.3 Notifications from Other Device Types
	10.11.3.1 SNotification Operation

	10.12 Activity LED
	10.13 BIST
	10.14 Index-Data Pair
	10.14.1 Rules/Restrictions
	10.14.2 IDP Index Register Format
	10.14.3 IDP Data Register Format
	10.14.4 Access Mechanism
	10.14.5 Index-Data Pair Discovery

	10.15 NVMHCI
	10.15.1 NVMHCI Register Support
	10.15.2 NVMHCI Generic Host Control under AHCI

	10.16 Automatic Partial to Slumber Transitions
	10.16.1 Automatic Partial to Slumber Transitions

	11 Command Completion Coalescing
	11.1 Command Completion Definition
	11.2 Timer Definition
	11.3 Selected Ports
	11.4 Interrupt Definition
	11.5 Enable and Disable Behavior
	11.6 Software Behavior
	11.6.1 Initialization
	11.6.2 Errors and Hot Plug Events
	11.6.3 CCC Interrupt Handling
	11.6.4 Updating Timeout Value or Number of Command Completions

	11.7 Example (Informative)

	12 Enclosure Management
	12.1 Mechanism
	12.2 Message Format
	12.2.1 LED message type
	12.2.2 SAF-TE message type
	12.2.3 SES-2 message type

	13 Informative Appendix
	13.1 Port Selector Support
	13.2 Legacy ATAPI Device Seek Complete Behavior

