
Scheduling

Module 13

Main Points
• Scheduling policy: what to do next, when there are multiple

threads ready to run
– Or multiple packets to send, or web requests to serve, or …

• Definitions
– response time, throughput, predictability

• Fundamentals: Unicore policies
– FIFO, round robin, Optimal
– multilevel feedback as approximation to optimal

• Multicore policies
– Affinity scheduling, gang scheduling

• Queueing theory
– Can you understand/predict/improve a system’s response time?

Definitions
• Workload

– Set of tasks for system to perform
• Preemptive scheduler

– If we can take resources away from a running task
• Work-conserving

– Resource is used whenever there is a task to run
– For non-preemptive schedulers, work-conserving is not always

better
• Scheduling algorithm

– takes a workload as input
– decides which tasks to do first
– Performance metric (throughput, latency) as output
– Only preemptive, work-conserving schedulers to be considered

Performance Metrics

• Throughput
– average tasks completed per time unit

• Response Time
– average time required to complete a task

• Fairness
– ?

• Unfairness
– Priorities

Policy: First In First Out (FIFO)

• Schedule tasks in the order they arrive
– Continue running them until they complete or

give up the processor

• On what workloads is FIFO particularly bad?

Policy: Shortest Job First (SJF)

• Always do the task that has the shortest
(remaining) amount of work to do
– Often called Shortest Remaining Time First (SRTF)

• Suppose we have five tasks arrive one right
after each other, but the first one is much
longer than the others
– Which completes first in FIFO? Next?
– Which completes first in SJF? Next?

FIFO vs. SJF

Question

• Claim: SJF is optimal for average response
time
– Why?

• Does SJF have any downsides?

Question

• Claim: SJF is optimal for average response time
– Why?

• Interchange argument
– If a longer task precedes a shorter one in the schedule, swap them
– The longer one’s response time in the new schedule equals the shorter

one’s in the old schedule
– The shorter one’s response time in the new schedule is less than the

longer one’s in the old schedule
– So, the average response time has decreased

• Does SJF have any downsides?
– Fairness?
– Starvation?

Question

• Is FIFO ever optimal?

• Pessimal?

Question

• Is FIFO ever optimal?
– When it corresponds to SJF...
– Including when all tasks are the same length

• Pessimal?
– When it’s longest job first

Evaluation Issues:
Starvation and Sample Bias

• Suppose you want to compare two scheduling
algorithms
– Create some infinite sequence of arriving tasks
– Start measuring
– Stop at some point
– Compute average response time as the average

for completed tasks between start and stop

• Is this valid or invalid?

Evaluation Issues:
Starvation and Sample Bias

• Is this valid or invalid?
– Maybe yes, maybe no
– The potential issue is that tasks discriminated

against by one of the policies may not finish
during the measurement interval evaluating that
policy

• The “bias” is that some kinds of tasks may be measured
less frequently than they occur in the workload

Sample Bias Solutions

• Measure for long enough that # of completed
tasks >> # of uncompleted tasks
– For both systems!

• Start and stop system in idle periods
– Idle period: no work to do
– If algorithms are work-conserving, both will

complete the same tasks

Policy: (Pre-emptive) Round Robin
• Each task gets resource for a fixed period of time

(time quantum)
– If task doesn’t complete, it goes back in line

• Does this sound familiar?

• Need to pick a time quantum
– What if time quantum is too long?

• Infinite?
– What if time quantum is too short?

• One instruction?

Round Robin

Round Robin vs. FIFO

• Assuming zero-cost time slice, is Round Robin
always better than FIFO?

Round Robin vs. FIFO

Round Robin == Fairness?

• Is Round Robin always fair?

• What is fair?
– FIFO?
– Equal share of the CPU?
– What if some tasks don’t need their full share?
– Minimize worst case divergence?

• Time task would take if no one else was running
• Time task takes under scheduling algorithm

Mixed Workload

Max-Min Fairness

• How do we balance a mixture of repeating tasks:
– Some I/O bound, need only a little CPU
– Some compute bound, can use as much CPU as they

are assigned
• One approach: maximize the minimum allocation

given to a task
– If any task needs less than an equal share, schedule

the smallest of these first
– Split the remaining time using max-min
– If all remaining tasks need at least equal share, split

evenly

Linux Completely Fair Scheduler
• Each thread t has a weight, w(t)
• Each runnable thread t should acquire CPU time at rate

w(t) / ∑jw(j)
– no reward while not runnable

• Keep track of accumulated weighted runtime vs. fair
share amount

• Over a fixed interval, try to run each runnable thread at
least once
– Set timeslice according to its fair share of interval, based

on weights
• Dispatch the thread whose accumulated runtime is

most behind its fair share

Uniprocessor Summary (1)

• FIFO is simple and minimizes overhead.
• If tasks are variable in size, then FIFO can have

very poor average response time.
• If tasks are equal in size, FIFO is optimal in terms

of average response time.
• Considering only the processor, SJF is optimal in

terms of average response time.
• SJF is pessimal in terms of variance in response

time.

Uniprocessor Summary (2)

• If tasks are variable in size, Round Robin
approximates SJF.

• If tasks are equal in size, Round Robin will
have very poor average response time.

• Tasks that intermix processor and I/O benefit
from SJF and can do poorly under Round
Robin.

Uniprocessor Summary (3)

• Max-Min fairness can improve response time
for I/O-bound tasks.

• Round Robin and Max-Min fairness both avoid
starvation.

• Max-min fairness / Completely Fair Scheduler
attempt to roll performance, fairness, and IO
behavior into one unified approach (with good
success)

Multiprocessor Scheduling

• What new issues are there?
– Contention for scheduler spinlock
– Cache slowdown due to ready list data structure

pinging from one CPU to another
– Limited cache reuse: thread’s data from last time

it ran is often still in its old cache

Per-Processor Affinity Scheduling

• Each processor has its own ready list
– Protected by a per-processor spinlock

• Put threads back on the ready list where it had
most recently run
– Ex: when I/O completes, or on Condition->signal

• Idle processors can steal work from other
processors

Scheduling Parallel Programs

• A parallel program has many, often fine-
grained, threads that frequently synchronize

• What happens if one thread gets time-sliced
while other threads from the same program
are still running?
– Assuming program uses locks and condition

variables, it will still be correct
– What about performance?

Bulk Synchronous Parallelism

• Loop at each processor:
– Compute on local data (in parallel)
– Barrier
– Send (selected) data to other processors (in parallel)
– Barrier

• Examples:
– MapReduce
– Fluid flow over a wing
– Most parallel algorithms can be recast in BSP

• Sacrificing a small constant factor in performance

Tail Latency

Scheduling Parallel Programs
Oblivious: each processor time-slices its ready

list independently of the other processors

Gang Scheduling

Parallel Program Speedup

Space Sharing

Scheduler activations: kernel tells each application its # of
processors with upcalls every time the assignment changes

	Scheduling
	Main Points
	Definitions
	Performance Metrics
	Policy: First In First Out (FIFO)
	Policy: Shortest Job First (SJF)
	FIFO vs. SJF
	Question
	Question
	Question
	Question
	Evaluation Issues:�Starvation and Sample Bias
	Evaluation Issues:�Starvation and Sample Bias
	Sample Bias Solutions
	Policy: (Pre-emptive) Round Robin
	Round Robin
	Round Robin vs. FIFO
	Round Robin vs. FIFO
	Round Robin == Fairness?
	Mixed Workload
	Max-Min Fairness
	Linux Completely Fair Scheduler
	Uniprocessor Summary (1)
	Uniprocessor Summary (2)
	Uniprocessor Summary (3)
	Multiprocessor Scheduling
	Per-Processor Affinity Scheduling
	Scheduling Parallel Programs
	Bulk Synchronous Parallelism
	Tail Latency
	Scheduling Parallel Programs
	Gang Scheduling
	Parallel Program Speedup
	Space Sharing

