Scheduling

Module 13

Main Points

Scheduling policy: what to do next, when there are multiple
threads ready to run

— Or multiple packets to send, or web requests to serve, or ...
Definitions
— response time, throughput, predictability
Fundamentals: Unicore policies
— FIFO, round robin, Optimal
— multilevel feedback as approximation to optimal
Multicore policies
— Affinity scheduling, gang scheduling
Queueing theory
— Can you understand/predict/improve a system’s response time?

Definitions

Workload
— Set of tasks for system to perform

Preemptive scheduler
— |If we can take resources away from a running task

Work-conserving
— Resource is used whenever there is a task to run

— For non-preemptive schedulers, work-conserving is not always
better

Scheduling algorithm
— takes a workload as input
— decides which tasks to do first
— Performance metric (throughput, latency) as output
— Only preemptive, work-conserving schedulers to be considered

Performance Metrics

Throughput

— average tasks completed per time unit

Response Time

— average time required to complete a task
Fairness

— 7

Unfairness

— Priorities

Policy: First In First Out (FIFO)

* Schedule tasks in the order they arrive

— Continue running them until they complete or
give up the processor

* On what workloads is FIFO particularly bad?

Policy: Shortest Job First (SJF)

e Always do the task that has the shortest
(remaining) amount of work to do

— Often called Shortest Remaining Time First (SRTF)

* Suppose we have five tasks arrive one right
after each other, but the first one is much
longer than the others

— Which completes first in FIFO? Next?
— Which completes first in SJF? Next?

FIFO vs. SJF

Taskp FIFO

(1]
i2
i

i

(h]|

Taske SJF

2
K]
]
5]

S S T I D —

Time

Question

* Claim: SJF is optimal for average response
time
— Why?

* Does SJF have any downsides?

Question

Claim: SJF is optimal for average response time
— Why?
* Interchange argument

— If a longer task precedes a shorter one in the schedule, swap them

— The longer one’s response time in the new schedule equals the shorter
one’s in the old schedule

— The shorter one’s response time in the new schedule is less than the
longer one’s in the old schedule

— So, the average response time has decreased

Does SJF have any downsides?
— Fairness?
— Starvation?

Question

* |s FIFO ever optimal?

e Pessimal?

Question

* |s FIFO ever optimal?
— When it corresponds to SJF...
— Including when all tasks are the same length

* Pessimal?
— When it’s longest job first

Evaluation Issues:
Starvation and Sample Bias

* Suppose you want to compare two scheduling
algorithms
— Create some infinite sequence of arriving tasks
— Start measuring
— Stop at some point

— Compute average response time as the average
for completed tasks between start and stop

e |s this valid or invalid?

Evaluation Issues:
Starvation and Sample Bias

* |s this valid or invalid?
— Maybe yes, maybe no

— The potential issue is that tasks discriminated
against by one of the policies may not finish
during the measurement interval evaluating that
policy

* The “bias” is that some kinds of tasks may be measured
less frequently than they occur in the workload

Sample Bias Solutions

 Measure for long enough that # of completed
tasks >> # of uncompleted tasks

— For both systems!

e Start and stop system in idle periods
— Idle period: no work to do

— If algorithms are work-conserving, both will
complete the same tasks

Policy: (Pre-emptive) Round Robin

* Each task gets resource for a fixed period of time
(time quantum)

— |f task doesn’t complete, it goes back in line

 Does this sound familiar?

* Need to pick a time quantum
— What if time quantum is too long?
* Infinite?
— What if time quantum is too short?
* One instruction?

Tazae

Round Robin

Round Robin {1 ms time slice)

Aestal Task 1

Round Robin {100 ma ime slice)

fest al Tagk

Timea

Round Robin vs. FIFO

* Assuming zero-cost time slice, is Round Robin
always better than FIFO?

Round Robin vs. FIFO

Tash Round Robin {1 ms time slice)

i2l
]|
4]

b]]

Toks FIFO and SJF

il
2l
a |

] :

A

Timea

Round Robin == Fairness?

* |s Round Robin always fair?

 What s fair?
— FIFO?
— Equal share of the CPU?
— What if some tasks don’t need their full share?

— Minimize worst case divergence?
* Time task would take if no one else was running
e Time task takes under scheduling algorithm

Taeks
U1l Bournd

[FU Brund

[FU Brund

Mixed Workload

L.

LT T E

Iy Complalee
ECHTLE

I

FESTEES
I
Risgquasl

Time

I
[iem pl e

Max-Min Fairness

* How do we balance a mixture of repeating tasks:
— Some I/0 bound, need only a little CPU

— Some compute bound, can use as much CPU as they
are assigned

* One approach: maximize the minimum allocation
given to a task

— If any task needs less than an equal share, schedule
the smallest of these first

— Split the remaining time using max-min

— If all remaining tasks need at least equal share, split
evenly

Linux Completely Fair Scheduler

Each thread t has a weight, w(t)
Each runnable thread t should acquire CPU time at rate

w(t) / 3;w(j)
— no reward while not runnable

Keep track of accumulated weighted runtime vs. fair
share amount

Over a fixed interval, try to run each runnable thread at
least once

— Set timeslice according to its fair share of interval, based
on weights

Dispatch the thread whose accumulated runtime is
most behind its fair share

Uniprocessor Summary (1)

FIFO is simple and minimizes overhead.

If tasks are variable in size, then FIFO can have
Very poor average response time.

If tasks are equal in size, FIFO is optimal in terms
of average response time.

Considering only the processor, SJF is optimal in
terms of average response time.

SJF is pessimal in terms of variance in response
time.

Uniprocessor Summary (2)

e |f tasks are variable in size, Round Robin

approximates SJF.

* |f tasks are equal in size, Round Robin will
have very poor average response time.

* Tasks that intermix processor and |/O benefit
from SJF and can do poorly under Round
Robin.

Uniprocessor Summary (3)

 Max-Min fairness can improve response time
for I/O-bound tasks.

e Round Robin and Max-Min fairness both avoid
starvation.

* Max-min fairness / Completely Fair Scheduler
attempt to roll performance, fairness, and 10
behavior into one unified approach (with good
success)

Multiprocessor Scheduling

* What new issues are there?
— Contention for scheduler spinlock

— Cache slowdown due to ready list data structure
pinging from one CPU to another

— Limited cache reuse: thread’s data from last time
it ran is often still in its old cache

Per-Processor Affinity Scheduling

* Each processor has its own ready list

— Protected by a per-processor spinlock

e Put threads back on the ready list where it had
most recently run
— Ex: when I/O completes, or on Condition->signal

* |dle processors can steal work from other
processors

Scheduling Parallel Programs

* A parallel program has many, often fine-
grained, threads that frequently synchronize

 What happens if one thread gets time-sliced
while other threads from the same program
are still running?

— Assuming program uses locks and condition
variables, it will still be correct

— What about performance?

Bulk Synchronous Parallelism

* Loop at each processor:
— Compute on local data (in parallel)
— Barrier
— Send (selected) data to other processors (in parallel)
— Barrier

 Examples:
— MapReduce
— Fluid flow over a wing

— Most parallel algorithms can be recast in BSP
 Sacrificing a small constant factor in performance

Tail Latency

Frocagsor 1 Processar 2 Processor 3 Frocessor 4

i |

Liszal Coimpuiabon S
- 3 " y 5 - Horrier
L - L" - .
w) ..-.. -~ " o ", o !
e = o
E Commumcalian 2 ey X
A e, A ’ -
- o, - ", r .
"]
K A i o A - Rartier

Local Compuiaticn

Scheduling Parallel Programs

Oblivious: each processor time-slices its ready
list independently of the other processors

Procassor 1 Frocessor 2 Processor 3

pl.4 gl

5 2 1 5

5

p.d gl

El s 1 S
pi. 1 pz 3

5 (" 5

po.y = Thread y in BrOCEss §

Tenea

Procassor 1

5|:|1.I
5"
G

pdd

Gang Scheduling

Frocassor 2

3
2

>

p1id

pea

pd 2

poc 'y = Thread ¥ in Frocess

Procassor 3

S

:
S

gl

pdl

Performance

Parallel Program Speedup

Perlecdy Parall

)
E
|_
ﬂ Dimirishing Releres
B
B
&
b
E Lirmile=d Paraieliam

Mumber of Processors

Tima

Space Sharing

FTALEEs0r | Processar 3

Processar 3

Fracessor 4

FTOL ST 5 Proszessar b

5 0

Frocess 1

Frocesg 2

Scheduler activations: kernel tells each application its # of
processors with upcalls every time the assignment changes

	Scheduling
	Main Points
	Definitions
	Performance Metrics
	Policy: First In First Out (FIFO)
	Policy: Shortest Job First (SJF)
	FIFO vs. SJF
	Question
	Question
	Question
	Question
	Evaluation Issues:�Starvation and Sample Bias
	Evaluation Issues:�Starvation and Sample Bias
	Sample Bias Solutions
	Policy: (Pre-emptive) Round Robin
	Round Robin
	Round Robin vs. FIFO
	Round Robin vs. FIFO
	Round Robin == Fairness?
	Mixed Workload
	Max-Min Fairness
	Linux Completely Fair Scheduler
	Uniprocessor Summary (1)
	Uniprocessor Summary (2)
	Uniprocessor Summary (3)
	Multiprocessor Scheduling
	Per-Processor Affinity Scheduling
	Scheduling Parallel Programs
	Bulk Synchronous Parallelism
	Tail Latency
	Scheduling Parallel Programs
	Gang Scheduling
	Parallel Program Speedup
	Space Sharing

