
Redundant Arrays of Inexpensive Disks
(RAID)

Module 12

Background

• Disks are cheap
– An individual system can have more than one

• Standard file system implementations manage all of
an individual disk/partition

/etc/passwd

/etc

/home/jz

/home

Two disks vs. one

• How is “peak performance” affected?
– Are read times cut in half? Is write throughput doubled?

• How is reliability affected?
– Is it more or less likely a disk failure will cause data loss?
– How much of your data do you lose?

/etc/passwd

/etc

/home/jz

/home

/home/jz

/home
/etc

/etc/passwd

4

Basic Idea

• Performance: By striping individual files across
multiple disks, we can use parallel I/O to improve
access time even when overall I/O demand is
bursty/low
– There’s only one file to read right now. Get it fast.

• Reliability: Striping reduces reliability
– 10 disks have about 1/10th the MTBF (mean time between

failures) of one disk

• So, we want striping for performance, but we need
something to help with reliability

5

Reliability through Redundancy

• To achieve this level of reliability, add redundant data that
allows a disk failure to be tolerated
– We’ll see how in a minute

• At the scales we’re currently considering (tens of disks), it’s
typically enough to be resilient to the failure of a single disk
– What are the chances that a second disk will fail before you’ve

replaced the first one?
• Er, it has happened to us!

• So:
– Obtain performance from striping
– Obtain reliability from redundancy

RAID

• RAID: Redundant Array of Inexpensive Disks

• Disks are small and cheap, so it’s easy to put lots of
disks (10s, say) in one box for increased storage,
performance, and availability

• Data plus some redundant information is striped
across the disks in some way

• How striping is done is key to performance and
reliability

RAID Implementation
• Option A: hardware

– The hardware RAID controller deals with this
• From the OS’s perspective, the multi-disk RAID looks like one

big array of blocks

• Option 2: software
– A low level layer of the OS knows there are multiple disks,

but presents them to upper layers as a single block device
• That is, it does what the hw RAID controller does

• It doesn’t matter to what follows which approach is
used

7

8

Some RAID tradeoffs

• Granularity
– fine-grained: stripe each file over all disks

• high throughput for the file
• limits transfer to 1 file at a time

– coarse-grained: stripe each file over only a few disks
• limits throughput for 1 file
• allows concurrent access to multiple files

• Redundancy
– uniformly distribute redundancy information on disks

• avoids load-balancing problems
– concentrate redundancy information on a small number of

disks
• partition the disks into data disks and redundancy disks

RAID Level 0: Non-Redundant Striping

• RAID Level 0 is a non-redundant disk array
• Files/blocks are striped across disks, no redundant

info
• High (single-file) read throughput
• Best write throughput (no redundant info to write)
• Maximum use of disk capacity
• Any disk failure results in data loss

data disks

RAID Level 1: Mirrored Disks

• Files are striped across half the disks, and mirrored to the other
half
– 2x space expansion

• Reads: Read from either copy
• Writes: Write both copies
• On single drive failure, just use the surviving disk during repair
• If two disks fail, you rely on luck…

data disks mirror copies

identical identical

11

Prelude to RAID Levels 2-5: A parity refresher

• To each byte, add a bit whose value is set so that the
total number of 1’s is even

• Any single missing bit can be reconstructed
• More sophisticated schemes, called ECC (error

correcting codes), can correct multiple bit errors

1 0 1 1 0 1 1 0 1

RAID Levels 2, 3, and 4: Striping + Parity Disk
• RAID levels 2, 3, and 4 use parity or ECC disks

– e.g., each byte on the parity disk is a parity function of the
corresponding bytes on all the other disks

– details between the different levels have to do with kind of ECC
used, and whether it is bit-level, byte-level, or block-level

• A read accesses all the data disks, a write accesses all the data
disks plus the parity disk

• On disk failure, read the remaining disks plus the parity disk to
compute the missing data

data disks parity disk

RAID Level 5

• RAID Level 5 uses block interleaved distributed parity
• Like parity scheme, but distribute the parity info (as

well as data) over all disks
– for each block, one disk holds the parity, and the other disks

hold the data
• Significantly better performance

– parity disk is not a hot spot

0 1 2 3 PO

5 6 7 P1 4

10 11 P2 8 9

data & parity drives

File Block
Numbers

14

RAID Level 6

• Basically like RAID 5 but with replicated parity blocks
so that it can survive two disk failures.

• Useful for larger disk arrays where multiple failures
are more likely.

RAID Summary

• Why use multiple disks (vs. one bigger disk)?

• What kinds of errors is RAID designed to protect against?

• If you have RAID, do you need journaling?

• If you have RAID, is a log structured file system of any use?

• If you have RAID, do you need file system backups?

• Is there any realistic situation in which you might lose “too many” disks
at once?

• For example, all of them?

	���Redundant Arrays of Inexpensive Disks�(RAID)��Module 12
	Background
	Two disks vs. one
	Basic Idea
	Reliability through Redundancy
	RAID
	RAID Implementation
	Some RAID tradeoffs
	RAID Level 0: Non-Redundant Striping
	RAID Level 1: Mirrored Disks
	Prelude to RAID Levels 2-5: A parity refresher
	RAID Levels 2, 3, and 4: Striping + Parity Disk
	RAID Level 5
	RAID Level 6
	RAID Summary

