
CSE 451

Module 11
Berkeley Log-Structured File System

LFS inspiration
• Memory caching is generally effective

– Result is that most physical disk operations are writes
• Can delay writing only so long
• Writes to journal (redo log) are writes

• Suppose all writes to disk were written as a log (i.e., appended)
– log includes modified data blocks and modified metadata blocks
– buffer a huge block (“segment”) in memory
– when full, write it to disk in one efficient contiguous transfer

• So the disk contains a single long log of changes, consisting of
threaded segments

• Reminds you of journaling?
– Yes, except that there is no “home location” for data or metadata
– The log is all there is

LFS basic approach
• Use the disk as a log

– A log is a data structure that is written only at one end
• If the disk were managed as a log

– [spinning] there would be effectively no seeks (for writes)
– you’d be updating an entire erasure block every write
– you’d (hope to) be spreading updates across the device

• New data and metadata (i-nodes, directories) are
accumulated in the buffer cache, then written all at once in
large blocks

• If you write enough data at once, you can achieve close to
the transfer rate of the device
– both spinning and SSD

• Sounds simple – but complicated under the covers

LFS vs. FFS

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log

i-node

directory

data

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS

5

LFS Challenges
• Locating data on the disk

– FFS place inodes in a well-known location
– LFS writes data “at the end of the log”

• Managing free space on the disk
– Disk is finite, and therefore log must be finite
– So cannot just keep appending to log, ad infinitum!

• need to recover space used by deleted blocks in log
• need to fill holes in segments created by recovered blocks

– why?
• “cleaning”

• Note:
– in-memory caching is the same as before
– reads that go to disk are the same as FFS, once you find the

i-node

6

LFS: Locating data and i-nodes

• Data
– LFS uses i-nodes to locate data blocks, just like FFS

• i-nodes
– i-nodes are appended to end of log, not at all like FFS
– i-node number is no longer an index in an array, it’s just a

name

• How to locate i-node on disk?
– Use another level of indirection

• i-node maps
• i-node # → i-node location

7

LFS: Locating the i-node map
• Use another level of indirection

– i-node maps: i-node # → i-node location
– the map is indexed by the i-node #
– i-node map is a logical structure, kept on disk
– it’s updated often →

• don’t store as an array in a fixed location, instead
• write changes to it to the log (!)

• How do you find the i-node map?
– location of i-node map blocks are kept in a checkpoint

region
– checkpoint region has a fixed location

• two copies, actually
– why?

– cache these structures in memory for performance

LFS vs. FFS

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log

i-node

directory

data

i-node map

checkpoint
region

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS

9

LFS: File reads and writes

• Reads are no different than in FS/FFS, once we find
the i-node for the file
– The i-node map, which is cached in memory, gets you to the

i-node, which gets you to the blocks

• Every write causes new blocks to be added to the tail
end of the current “segment buffer” in memory
– When the segment is full, it’s written to disk

10

LFS: Free space management

• Writing segments to the log eats up disk space

• Over time, segments in the log become fragmented
as we replace old blocks of files with new blocks
– live i-nodes no longer point to blocks, but those blocks still

occupy their space in the log
• “dead i-nodes” provide opportunity to save versions of file

system

• Garbage-collect segments
– coalesce “live” data from sparsely populated segments into

fully populated segments
– results in a “clean segment” that can be fully written / reused

11

LFS: Segment cleaning

• Cleaning is an issue
– costly overhead, when do you do it?

• A cleaner daemon cleans old segments, based on
– utilization: how much is to be gained by cleaning?
– age: how likely is the segment to change soon?

LFS summary

• As caches get big, most reads will be satisfied from the cache
– No matter how you cache write operations, though, they are eventually

going to have to get back to disk
– Thus, most disk traffic will be write traffic

• If you eventually put blocks (i-nodes, file content blocks) back
where they came from, then even if you schedule disk writes
cleverly, you’re effectively doing random writes (bad)

• Instead, do all writes as appends to disk log
– A modest amount of data is located in a fixed location, so that you can find

the i-nodes, and is updated only occasionally

• What happens when a crash occurs?
• Suppose you have to read a file?
• How do you prevent overflowing the disk?

	CSE 451��Module 11�Berkeley Log-Structured File System
	LFS inspiration
	LFS basic approach
	LFS vs. FFS
	LFS Challenges
	LFS: Locating data and i-nodes
	LFS: Locating the i-node map
	LFS vs. FFS
	LFS: File reads and writes
	LFS: Free space management
	LFS: Segment cleaning
	LFS summary

