CSE 451

Module 11
Berkeley Log-Structured File System

LFS inspiration

Memory caching is generally effective

— Result is that most physical disk operations are writes
» Can delay writing only so long
» Writes to journal (redo log) are writes

Suppose all writes to disk were written as a log (i.e., appended)
— log includes modified data blocks and modified metadata blocks
— buffer a huge block (“segment”) in memory
— when full, write it to disk in one efficient contiguous transfer

So the disk contains a single long log of changes, consisting of
threaded segments

Reminds you of journaling?
— Yes, except that there is no “home location” for data or metadata
— The log is all there is

LFS basic approach

Use the disk as a /og
— Alog is a data structure that is written only at one end

If the disk were managed as a log

— [spinning] there would be effectively no seeks (for writes)
— you’d be updating an entire erasure block every write

— you'd (hope to) be spreading updates across the device

New data and metadata (i-nodes, directories) are
accumulated in the buffer cache, then written all at once in
large blocks

If you write enough data at once, you can achieve close to
the transfer rate of the device

— both spinning and SSD
Sounds simple — but complicated under the covers

LFS vs. FFS

file1 file2
dir1 dir2
Unix File
System
dir1 dir2
Log >

Log-Structured
File System

file1 file2

I-node

. directory

data

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS

LFS Challenges

« Locating data on the disk
— FFS place inodes in a well-known location
— LFS writes data “at the end of the log”

« Managing free space on the disk
— Disk is finite, and therefore log must be finite

— So cannot just keep appending to log, ad infinitum!
* need to recover space used by deleted blocks in log
» need to fill holes in segments created by recovered blocks
— why?
» “cleaning”

* Note:
— in-memory caching is the same as before

— reads that go to disk are the same as FFS, once you find the
i-node

LFS: Locating data and i-nodes

« Data

— LFS uses i-nodes to locate data blocks, just like FFS

* |-nodes
— i-nodes are appended to end of log, not at all like FFS

— i-node number is no longer an index in an array, it's just a
name

« How to locate i-node on disk?
— Use another level of indirection
* i-node maps
* i-node # — i-node location

LFS: Locating the i-node map

Use another level of indirection

— i-node maps: i-node # — i-node location

— the map is indexed by the i-node #

— I-node map is a logical structure, kept on disk

— it's updated often —
« don'’t store as an array in a fixed location, instead
» write changes to it to the log (!)

How do you find the i-node map?

— location of i-node map blocks are kept in a checkpoint
region
— checkpoint region has a fixed location
» two copies, actually
— why?
— cache these structures in memory for performance

LFS vs. FFS

file1 file2
dir1 dir2
Unix File
System
dir1 dir2
i
Log —>
— — Log-Structured

File System

I-node

. directory

data

. I-node map

l checkpoint
region

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS

LFS: File reads and writes

 Reads are no different than in FS/FFS, once we find
the i-node for the file

— The i-node map, which is cached in memory, gets you to the
I-node, which gets you to the blocks

* Every write causes new blocks to be added to the talil
end of the current “segment buffer” in memory
— When the segment is full, it's written to disk

LFS: Free space management

Writing segments to the log eats up disk space

Over time, segments in the log become fragmented
as we replace old blocks of files with new blocks

— live i-nodes no longer point to blocks, but those blocks still
occupy their space in the log

« “dead i-nodes” provide opportunity to save versions of file
system

Garbage-collect segments

— coalesce “live” data from sparsely populated segments into
fully populated segments

— results in a “clean segment” that can be fully written / reused

10

LFS: Segment cleaning

e Cleaning is an issue
— costly overhead, when do you do it?

* A cleaner daemon cleans old segments, based on
— utilization: how much is to be gained by cleaning?
— age: how likely is the segment to change soon?

11

LFS summary

As caches get big, most reads will be satisfied from the cache

— No matter how you cache write operations, though, they are eventually
going to have to get back to disk

— Thus, most disk traffic will be write traffic

If you eventually put blocks (i-nodes, file content blocks) back
where they came from, then even if you schedule disk writes
cleverly, you're effectively doing random writes (bad)

Instead, do all writes as appends to disk log

— A modest amount of data is located in a fixed location, so that you can find
the i-nodes, and is updated only occasionally

What happens when a crash occurs?
Suppose you have to read a file?
How do you prevent overflowing the disk?

	CSE 451��Module 11�Berkeley Log-Structured File System
	LFS inspiration
	LFS basic approach
	LFS vs. FFS
	LFS Challenges
	LFS: Locating data and i-nodes
	LFS: Locating the i-node map
	LFS vs. FFS
	LFS: File reads and writes
	LFS: Free space management
	LFS: Segment cleaning
	LFS summary

