
CSE 451

Journaling File Systems
Module 10

Caching (applies both to FS and FFS)

• Cache (often called buffer cache) is just part of
system memory

• It’s system-wide, shared by all processes
• Even a relatively small cache can be very effective
• Many file systems “read-ahead” into the cache,

increasing effectiveness even further

• Some applications assume data is on disk after a
write

• The file system itself may have consistency problems
if a crash occurs between syncs – i-nodes and file
blocks can get out of sync

• Imagine creating a new file
– Have to allocate an i-node (write i-node map)
– Have to initialize new i-node (write i-node)
– Have to create a directory entry (write directory i-node,

directory data block, and data map if had to allocate new
block for directory)

– Have to update superblock (free data and i-node counts)

Cached Writes and Crashes

Anticipating crashes
• Can I achieve robust updates by picking an order for

the writes?
– Have to allocate an i-node (write i-node map)
– Have to initialize new i-node (write i-node)
– Have to create a directory entry (write directory i-node,

directory data block, and data map if had to allocate new
block for directory)

– Have to update superblock (free data and i-node counts)
• What order is right?

Can I Recover After A Crash

• File system may be in an inconsistent state
– i-node map may indicate that an i-node is in use, but no

directory entry refers to it, or
– directory entry may refer to an i-node that appears to be free,

or
– i-node may refer to data blocks that appear to be free (in the

block map), or
– data blocks may appear to be in use but aren’t referenced by

any i-node, or
– a data block may be referenced by two or more i-nodes, or
– ...

fsck

• Imagine writing a utility that scans the file system for
consistency
– all blocks not referenced in any way should be marked free
– all inodes not referenced by any directory should be marked

free
– each data block in use should be used by exactly one i-node
– i-node reference counts should be accurate
– etc.

• Have to do this in “file order” not disk order
– slow!

Journaling file systems

• Goal: Make sure on-disk data is always in a consistent state

• How?
– update metadata [and all data] transactionally

• “all or nothing”

• if a crash occurs, you may lose a bit of work, but the disk will be
in a consistent state

• more precisely, you will be able to quickly get it to a consistent state by
using the transaction log/journal – rather than scanning every disk
block and checking sanity conditions

Where is the Data?
• In the file systems we have seen already, “the data”

is in two places:
– On disk
– In in-memory caches

• In a journaling file system, the data may be in three
places:
– The cache
– The “home copy” on disk
– A journal entry on disk

• The journal contains updates to the home copy
blocks

What about performance?
• Have to do two writes for each update

– one for journal entry and one to home location
– that can’t be good…

• Most reads/writes are absorbed by the cache
– You must eventually write, though

• Imagine a burst of file creation

• The journal can help performance
– write big segments of journal entries sequentially on the disk
– (each entry indicates the new value of some disk block)
– sequential writes are much faster than random writes
– At your leisure, push the updates (in order) to the home

copies and reclaim the journal space

Redo log
• Log: a chronologically ordered, append-only file containing log

records
– <start t>

• transaction t has begun
– <t,x,v>

• transaction t has updated block x and its new value is v
– log block “diffs” instead of full blocks

– <commit t>
• transaction t has committed

• A transaction whose commit record makes it into the on-disk
journal survives a crash

• A transaction whose commit record doesn’t make it will be
discarded

If a crash occurs

• Re-execute the log’s operations

• Redo committed transactions
– Walk the log in order and re-execute updates from all

committed transactions
– Aside: note that update (write) is idempotent: can be done

any non-zero number of times with the same result.

• Uncommitted transactions
– Ignore them. It’s as though the crash occurred a tiny bit

earlier…
– Sure, you lose some work (updates), but the file system isn’t

corrupted

Managing the Log Space

• A “cleaner” thread walks the log in order, updating
the home locations of updates in each transaction
– Note that idempotence is important here – may crash while

cleaning is going on

• Once a transaction has been reflected to the home
blocks, it can be deleted from the log

Impact on performance

• The log is a big contiguous write
– very efficient

• And you do fewer synchronous writes
– these are very costly in terms of performance

• So journaling file systems can actually improve
performance

• As well as making recovery very efficient

	CSE 451��Journaling File Systems�Module 10
	Caching (applies both to FS and FFS)
	Cached Writes and Crashes
	Anticipating crashes
	Can I Recover After A Crash
	fsck
	Journaling file systems
	Where is the Data?
	What about performance?
	Redo log
	If a crash occurs
	Managing the Log Space
	Impact on performance

