
Synchronization: Performance and
Multi-Object

Module 7

Topics

• Readers/Writers Locks
– Class exercise...

• Performance: Multiprocessor cache coherence
• MCS locks

– Usual lock semantics
– Optimized for case that locks are mostly busy

• RCU locks
– Relaxed semantics (somewhat like readers/writers)
– Optimized for locks are mostly busy and data is mostly

read-only

Readers/Writers Locks

Enabling Concurrency

• Imagine you’re creating a thread-safe
implementation of some data structure

• The interface is read(key) and put(key, value)
• Each instance of the data structure contains a

mutex that is used to restrict concurrent
operations

• Does put() need to obtain the mutex?
• Does read() need to obtain the mutex?

Readers/Writers Locks

• Normal mutex has semantics “one thread at a
time”

• We want semantics “any number of readers
but no writers” or “just one writer”

• Readers/writers locks support this
– Interface: startRead() ... doneRead()

startWrite() ... doneWrite()

R/W Locks Implementation

• Take a few minutes and implement them
– In teams

• The text advocates a “monitor style” programming
discipline
– Implement an abstract data type as a class
– Each instance contains a lock
– Every method acquires the lock as the first thing it does
– Every method releases the lock as the last thing it does
– What should your code do if it needs to wait?

R/W Locks Implementation
void startRead() {

lock.lock();
while (numWriters > 0) wait(readWaitCV, lock);
numReaders++;
lock.unlock();

}
void endRead() {

lock.lock();
if (--numReaders == 0) signal(writeWaitCV);
lock.unlock();

}

R/W Locks Implementation
void startWrite() {

lock.lock();
while (numWriters > 0 || numReaders > 0)

wait(readWaitCV, lock);
numWriters = 1;
lock.unlock();

}
void endWrite() {

lock.lock();
numWriters = 0;
broadcast(readWaitCV);
signal(writeWaitCV);
lock.unlock();

}

R/W Lock Implementation

• What’s bad about our implementation?
• What alternative semantics might you want?

Synchronization Performance: Caches

Synchronization Performance

• A program with lots of concurrent threads can
still have poor performance on a multiprocessor:
– Overhead of creating threads, if not needed
– Lock contention: only one thread at a time can hold a

given lock
– Shared data protected by a lock may ping back and

forth between cores
– False sharing: communication between cores even for

data that is not shared

Performance: Multiprocessor Cache
Coherence

• Scenario:
– Thread A modifies data inside a critical section

and releases lock
– Thread B acquires lock and reads data

• Easy if all accesses go to main memory
– Thread A changes main memory; thread B reads it

• Caching
– What if new data is cached at processor A?
– What if old data is cached at processor B

Write Back Cache Coherence

• Cache coherence = system behaves as if there is
one copy of the data
– If data is only being read, any number of caches can

have a copy
– If data is being modified, at most one cached copy

• On write: (get ownership)
– Invalidate all cached copies, before doing write
– Modified data stays in cache (“write back”)

• On read:
– Fetch value from owner or from memory

Cache State Machine

Invalid

Exclusive (writable)

Shared (Read-only)Read miss

Write miss

Peer write

Peer write

Peer read Write hit

Cache Coherence

• How do we know which cores have a location
cached?
– Snooping – shared bus; all cores see transactions
– Directory Based:

• Hardware keeps track of all cached copies
• On a read miss, if held exclusive, fetch latest copy and

invalidate that copy
• On a write miss, invalidate all copies

• Read-modify-write instructions
– Atomically fetch cache entry exclusive and update

• prevents any other cache from reading or writing the data
until instruction completes

A Simple Critical Section

// A counter protected by a spinlock
Counter::Increment() {

while (test_and_set(&lock))
;

value++;
memory_barrier();
lock = FREE; // atomic write

}

A Simple Test of Cache Behavior

Array of 1K counters, each protected by a
separate spinlock
– Array small enough to fit in cache

• Test 1: one thread loops over array
• Test 2: two threads loop over different arrays
• Test 3: two threads loop over single array
• Test 4: two threads loop over alternate

elements in single array

Results (64 core AMD Opteron)

One thread, one array 51 cycles
Two threads, two arrays 52
Two threads, one array 197
Two threads, odd/even 127

time to execute one Increment()

Lock Performance:
The Problem with Test-and-Set

Counter::Increment() {
while (test_and_set(&lock));
value++;
memory_barrier();
lock = FREE;

}

What happens if many processors try to acquire the
lock at the same time?
– Hardware doesn’t prioritize FREE

Test-and-Test-and-Set

Counter::Increment() {
while (lock == BUSY || test_and_set(&lock)) ;
value++;
memory_barrier();
lock = FREE;

}

What happens if many processors try to acquire the
lock?
– Lock value pings between caches

Test(-and-Test)-and-Set Performance

Some Approaches

• Insert a delay in the spin loop
– Helps but acquire is slow when not much

contention

• Spin adaptively
– No delay if few waiting
– Longer delay if many waiting
– Guess number of waiters by how long you wait

Reducing Lock Contention

• Fine-grained locking
– Partition object into subsets, each protected by its own

lock
• Example: hash table buckets

– vs. coarse-grained locking
• Per-processor data structures

– Partition object so that most/all accesses are made by
one processor

– Example: per-processor heap
• Ownership/Staged architecture

– Only one thread at a time accesses shared data
– Example: pipeline of threads

What If Locks are Still Mostly Busy?

• MCS Locks
– Memory system-aware, optimized lock

implementation for when lock is contended

• RCU (read-copy-update)
– Efficient readers/writers lock used in Linux kernel
– Readers never block
– Writer updates while readers operate (!)

• Both rely on atomic read-modify-write
instructions

Test(-and-Test)-and-Set Performance

MCS Locks

Background: Atomic
CompareAndSwap Instruction

• Operates on a memory word
• Check that the value of the memory word

hasn’t changed from what you expect
– E.g., no other thread did compareAndSwap first

• If it has changed, return an error (and loop)
• If it has not changed, set the memory word to

a new value

MCS Lock
TCB {

TCB *next; // next in line
bool needToWait;

}
MCSLock {

Queue *tail = NULL; // end of line
}

• Maintain a list of threads waiting for the lock
– Front of list holds the lock
– MCSLock::tail is last thread in list
– New thread uses CompareAndSwap to add to the tail

• Lock is passed by thread releasing the lock setting next-
>needToWait = FALSE;
– Next thread spins while its needToWait is TRUE

MCS In Operation

MCS Lock Implementation
MCSLock::acquire() {

Queue ∗oldTail = tail;

myTCB−>next = NULL;
myTCB−>needToWait = TRUE;
while (!compareAndSwap(&tail,

oldTail, &myTCB)) {
oldTail = tail;

}
if (oldTail != NULL) {

oldTail−>next = myTCB;
memory_barrier();
while (myTCB−>needToWait)

;
}

}

MCSLock::release() {
if (!compareAndSwap(&tail,

myTCB, NULL)) {
while (myTCB−>next == NULL)

;

myTCB−>next−>needToWait=FALS
E;

}
}

Read-Copy-Update Locks

Read-Copy-Update

• Goal: very fast reads to shared data
– Reads proceed without first acquiring a lock
– OK if write is (very) slow and infrequent

• Multiple concurrent versions
– Readers may see old version for a limited time

• Restricted update
– Writer computes new version of data structure
– Publishes new version with a single atomic instruction

• Relies on integration with thread scheduler
– Guarantee all readers complete within grace period,

and then garbage collect old version

Read-Copy-Update

Read-Copy-Update Implementation

• Readers disable interrupts on entry
– Guarantees they complete critical section in a timely fashion
– Prevents scheduler from running on that core
– No read or write lock

• Writer
– Acquire write lock

• One writer at a time
– Compute new data structure
– Publish new version with atomic instruction
– Release write lock
– Wait for scheduler time slice on each CPU
– Only then, garbage collect old version of data structure

RCU Lock Implementation

void ReadLock() { disableInterrupts(); }
void ReadUnlock() { enableInterrupts(); }
void WriteLock() { writerSpin.lock(); }
void WriteUnlock() { writerSpin.unlock(); }

void publish(void **pp1, void *p2) {
memory_barrier();
*pp1 = p2; // atomic assignment needed...
memory_barrier();

}

RCU Lock Implementation

// called after each modification (after releasing write lock)
void synchronize() {

c = atomicIncrement(globalCounter);
for (p=0; p<NUM_CORES; p++)

while (PER_PROC_VAR(quiescentCount,p) < c)
sleep(10); // about a scheduling quantum

}

// called by scheduler
void QuiescentState() {

memory_barrier();
PER_PROC_VAR(quiescentCount) = globalCounter;
memory_barrier();

}

Deadlock

Deadlock Definition

• Resource: any (passive) thing needed by a
thread to do its job (CPU, disk space, memory,
lock)
– Preemptable: can be taken away by OS
– Non-preemptable: must leave with thread

• Starvation: thread waits indefinitely
• Deadlock: circular waiting for resources

– Deadlock => starvation, but not vice versa

Example: two locks

Thread A

lock1.acquire();
lock2.acquire();
lock2.release();
lock1.release();

Thread B

lock2.acquire();
lock1.acquire();
lock1.release();
lock2.release();

Bidirectional Bounded Buffer

Thread A

buffer1.put(data);
buffer1.put(data);

buffer2.get();
buffer2.get();

Thread B

buffer2.put(data);
buffer2.put(data);

buffer1.get();
buffer1.get();

Suppose buffer1 and buffer2 both start almost full.

Two locks and a condition variable
Thread A

lock1.acquire();
…
lock2.acquire();
while (need to wait) {

condition.wait(lock2);
}
lock2.release();
…
lock1.release();

Thread B

lock1.acquire();
…
lock2.acquire();
…
condition.signal(lock2);
…
lock2.release();
…
lock1.release();

Yet another Example

Dining Lawyers

Each lawyer needs two chopsticks to eat.
Each grabs chopstick on the right first.

Necessary Conditions for Deadlock

1. Limited access to resources
– If infinite resources, no deadlock!

2. No preemption
– If resources are preemptable, can break deadlock

3. Hold and Wait
– Threads don’t voluntarily give up resources

4. Circular chain of requests

Question

• How does Dining Lawyers meet the necessary
conditions for deadlock?
– Limited access to resources
– No preemption
– Hold and wait
– Circular chain of requests

• How can we modify Dining Lawyers to prevent
deadlock?

Preventing and Avoiding Deadlock

Preventing Deadlock

• Make sure at least one of the four conditions
can’t hold by
– Exploit or limit program behavior

• Limit program from doing anything that might lead to
deadlock

– Predict the future
• If we know what program will do, we can tell if granting a

resource might lead to deadlock
– Detect and recover

• If we can rollback a thread, we can fix a deadlock once it
occurs

Exploit or Limit Behavior

• Provide enough resources
– How many chopsticks are enough?

• Eliminate wait while holding
– Release lock when calling out of module
– Acquire all locks at once, or none

• Eliminate circular waiting
– Lock ordering: always acquire locks in a fixed order
– Example: move file from one directory to another

Example

Thread 1

1. Acquire A
2.
3. Acquire C
4.
5. If (cond) Acquire B

Thread 2

1.
2. Acquire B
3.
4. Wait for A

How can we “pause” thread execution to
make sure to avoid deadlock?

Deadlock Dynamics

• Safe state:
– For any possible sequence of future resource

requests, it is possible to eventually grant all
requests (perhaps by delaying some requests)

• Unsafe state:
– Some sequence of resource requests can result in

deadlock, even if you delay allocating resources
• Doomed state:

– All possible computations lead to deadlock

Possible System States

Question

• What are the doomed states for Dining
Lawyers?

• What are the unsafe states?

• What are the safe states?

Communal Dining Lawyers

• n chopsticks in middle of table
• n lawyers, each can take one chopstick at a

time
• What are the safe states?
• What are the unsafe states?
• What are the doomed states?

Communal Mutant Dining Lawyers

• N chopsticks in the middle of the table
• N lawyers, each takes one chopstick at a time
• Lawyers need k chopsticks to eat, k > 1

• What are the safe states?
• What are the unsafe states?
• What are the doomed states?

Avoiding Deadlock: Predict the Future

• Banker’s algorithm
1. Threads state maximum resource needs in

advance

• Aside (from Banker’s Alg)
• If the app knows the maximum resources it can

possibly want going forward, how could we
prevent deadlock?

Avoiding Deadlock: Predict the Future

• Banker’s algorithm
1. Threads state maximum resource needs in

advance
2. Allocate resources dynamically when resource is

needed
1. wait if granting request could lead to deadlock

– Request can be granted if some sequential
ordering of threads is deadlock free

Banker’s Algorithm
• Grant request iff result is a safe state

– i.e., not an unsafe state
• Sum of maximum resource needs of current threads

can be greater than the total resources
– Provided there is some way for all the threads to finish

without getting into deadlock even if all request their
maximum

• Example: proceed if
– total available resources - # allocated >= max remaining

that might be needed by this thread in order to finish
– Guarantees this thread can finish

• Is this condition necessary?

Detect and Repair

• Algorithm
– Scan wait for graph
– Detect cycles
– Fix cycles

• Proceed without the resource
– Requires robust exception handling code

• Roll back and retry
– Transaction: all operations are provisional until have

all required resources to complete operation

Detecting Deadlock

Non-blocking algorithms
• An algorithm is non-blocking if a slow thread cannot

prevent another faster thread from making progress
– Using locks is not non-blocking because a thread may

acquire the lock and then run really really slowly
• (Why?)

• Non-blocking algorithms are often built on an atomic
hardware instruction, Compare And Swap (CAS)

bool CAS(ptr, old, new) {
if (*ptr == old) { *ptr = new; return true; }
return false;

}

Non-blocking atomic integer

• int atomic_int_add(atomic_int *p, int val) {
int oldval;
do {

oldval = *p;
} while (! CAS(p, oldval, oldval+val));

• What happens if multiple threads execute this
concurrently?
– Does every thread make progress?
– Does at least one thread make progress in bounded

number of steps?

Why non-blocking

• What if a thread is pre-empted while holding a
lock?

• If there are no locks, can there be deadlock?

• Priority inversion
– Suppose a low priority thread holds a lock needed

by a high priority thread
– (Alternative solution: priority inheritance)

Why not non-blocking?
(Non-blocking FIFO implementation)

Pointers are stored with a generation number in one 8-byte quantity
(32-bit pointer + 32-bit generation number)

From Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms
by Michael & Scott.

Non-blocking FIFO: enqueue()

Non-blocking FIFO: dequeue

Performance Results

12 processor Silicon Graphics Challenge

	Synchronization: Performance and Multi-Object��Module 7
	Topics
	Readers/Writers Locks
	Enabling Concurrency
	Readers/Writers Locks
	R/W Locks Implementation
	R/W Locks Implementation
	R/W Locks Implementation
	R/W Lock Implementation	
	Synchronization Performance: Caches
	Synchronization Performance
	Performance: Multiprocessor Cache Coherence
	Write Back Cache Coherence
	Cache State Machine
	Cache Coherence
	A Simple Critical Section
	A Simple Test of Cache Behavior
	Results (64 core AMD Opteron)
	Lock Performance:�The Problem with Test-and-Set
	Test-and-Test-and-Set
	Test(-and-Test)-and-Set Performance
	Some Approaches
	Reducing Lock Contention
	What If Locks are Still Mostly Busy?
	Test(-and-Test)-and-Set Performance
	MCS Locks
	Background: Atomic CompareAndSwap Instruction
	MCS Lock
	MCS In Operation
	MCS Lock Implementation
	Read-Copy-Update Locks
	Read-Copy-Update
	Read-Copy-Update
	Read-Copy-Update Implementation
	RCU Lock Implementation
	RCU Lock Implementation
	Deadlock
	Deadlock Definition
	Example: two locks
	Bidirectional Bounded Buffer
	Two locks and a condition variable
	Yet another Example
	Dining Lawyers
	Necessary Conditions for Deadlock
	Question
	Preventing and Avoiding Deadlock
	Preventing Deadlock
	Exploit or Limit Behavior
	Example
	Deadlock Dynamics
	Possible System States
	Question
	Communal Dining Lawyers
	Communal Mutant Dining Lawyers
	Avoiding Deadlock: Predict the Future
	Avoiding Deadlock: Predict the Future
	Banker’s Algorithm
	Detect and Repair
	Detecting Deadlock
	Non-blocking algorithms	
	Non-blocking atomic integer
	Why non-blocking
	Why not non-blocking?�(Non-blocking FIFO implementation)
	Non-blocking FIFO: enqueue()
	Non-blocking FIFO: dequeue
	Performance Results

