
Synchronization: Performance and 
Multi-Object

Module 7



Topics

• Readers/Writers Locks
– Class exercise...

• Performance: Multiprocessor cache coherence
• MCS locks

– Usual lock semantics
– Optimized for case that locks are mostly busy

• RCU locks
– Relaxed semantics (somewhat like readers/writers)
– Optimized for locks are mostly busy and data is mostly 

read-only



Readers/Writers Locks



Enabling Concurrency

• Imagine you’re creating a thread-safe 
implementation of some data structure

• The interface is read(key) and put(key, value)
• Each instance of the data structure contains a 

mutex that is used to restrict concurrent 
operations

• Does put() need to obtain the mutex?
• Does read() need to obtain the mutex?



Readers/Writers Locks

• Normal mutex has semantics “one thread at a 
time”

• We want semantics “any number of readers 
but no writers” or “just one writer”

• Readers/writers locks support this
– Interface:  startRead() ... doneRead()

startWrite() ... doneWrite()



R/W Locks Implementation

• Take a few minutes and implement them
– In teams

• The text advocates a “monitor style” programming 
discipline
– Implement an abstract data type as a class 
– Each instance contains a lock
– Every method acquires the lock as the first thing it does
– Every method releases the lock as the last thing it does
– What should your code do if it needs to wait?



R/W Locks Implementation
void startRead() {

lock.lock();
while ( numWriters > 0 ) wait(readWaitCV, lock);
numReaders++;
lock.unlock();

}
void endRead() {

lock.lock();
if ( --numReaders == 0 ) signal(writeWaitCV);
lock.unlock();

}



R/W Locks Implementation
void startWrite() {

lock.lock();
while ( numWriters > 0 || numReaders > 0 ) 

wait(readWaitCV, lock);
numWriters = 1;
lock.unlock();

}
void endWrite() {

lock.lock();
numWriters = 0;
broadcast(readWaitCV);
signal(writeWaitCV);
lock.unlock();

}



R/W Lock Implementation

• What’s bad about our implementation?
• What alternative semantics might you want?



Synchronization Performance: Caches



Synchronization Performance 

• A program with lots of concurrent threads can 
still have poor performance on a multiprocessor:
– Overhead of creating threads, if not needed
– Lock contention: only one thread at a time can hold a 

given lock
– Shared data protected by a lock may ping back and 

forth between cores
– False sharing: communication between cores even for 

data that is not shared



Performance: Multiprocessor Cache 
Coherence

• Scenario:
– Thread A modifies data inside a critical section 

and releases lock
– Thread B acquires lock and reads data

• Easy if all accesses go to main memory
– Thread A changes main memory; thread B reads it

• Caching
– What if new data is cached at processor A?
– What if old data is cached at processor B



Write Back Cache Coherence

• Cache coherence = system behaves as if there is 
one copy of the data
– If data is only being read, any number of caches can 

have a copy
– If data is being modified, at most one cached copy

• On write: (get ownership)
– Invalidate all cached copies, before doing write
– Modified data stays in cache (“write back”)

• On read:
– Fetch value from owner or from memory



Cache State Machine

Invalid

Exclusive (writable)

Shared (Read-only)Read miss

Write miss

Peer write

Peer write

Peer read Write hit



Cache Coherence

• How do we know which cores have a location 
cached?
– Snooping – shared bus; all cores see transactions
– Directory Based:

• Hardware keeps track of all cached copies
• On a read miss, if held exclusive, fetch latest copy and 

invalidate that copy
• On a write miss, invalidate all copies

• Read-modify-write instructions
– Atomically fetch cache entry exclusive and update

• prevents any other cache from reading or writing the data 
until instruction completes



A Simple Critical Section

// A counter protected by a spinlock
Counter::Increment() {

while (test_and_set(&lock))
;

value++;
memory_barrier(); 
lock = FREE;   // atomic write

} 



A Simple Test of Cache Behavior

Array of 1K counters, each protected by a 
separate spinlock
– Array small enough to fit in cache

• Test 1: one thread loops over array
• Test 2: two threads loop over different arrays
• Test 3: two threads loop over single array
• Test 4: two threads loop over alternate 

elements in single array



Results (64 core AMD Opteron)

One thread, one array 51 cycles
Two threads, two arrays 52 
Two threads, one array 197
Two threads, odd/even 127

time to execute one Increment() 



Lock Performance:
The Problem with Test-and-Set

Counter::Increment() {
while (test_and_set(&lock));
value++;
memory_barrier();
lock = FREE; 

}

What happens if many processors try to acquire the 
lock at the same time?
– Hardware doesn’t prioritize FREE



Test-and-Test-and-Set

Counter::Increment() {
while (lock == BUSY || test_and_set(&lock)) ;
value++;
memory_barrier();
lock = FREE;

}

What happens if many processors try to acquire the 
lock?
– Lock value pings between caches



Test(-and-Test)-and-Set Performance



Some Approaches

• Insert a delay in the spin loop 
– Helps but acquire is slow when not much 

contention

• Spin adaptively
– No delay if few waiting
– Longer delay if many waiting
– Guess number of waiters by how long you wait



Reducing Lock Contention

• Fine-grained locking
– Partition object into subsets, each protected by its own 

lock
• Example: hash table buckets

– vs. coarse-grained locking
• Per-processor data structures

– Partition object so that most/all accesses are made by 
one processor

– Example: per-processor heap
• Ownership/Staged architecture

– Only one thread at a time accesses shared data
– Example: pipeline of threads



What If Locks are Still Mostly Busy?

• MCS Locks
– Memory system-aware, optimized lock 

implementation for when lock is contended

• RCU (read-copy-update)
– Efficient readers/writers lock used in Linux kernel
– Readers never block
– Writer updates while readers operate (!)

• Both rely on atomic read-modify-write
instructions



Test(-and-Test)-and-Set Performance



MCS Locks



Background: Atomic 
CompareAndSwap Instruction

• Operates on a memory word
• Check that the value of the memory word 

hasn’t changed from what you expect
– E.g., no other thread did compareAndSwap first

• If it has changed, return an error (and loop)
• If it has not changed, set the memory word to 

a new value



MCS Lock
TCB {

TCB *next;                 // next in line
bool needToWait;   

}
MCSLock {

Queue *tail = NULL; // end of line
}

• Maintain a list of threads waiting for the lock
– Front of list holds the lock
– MCSLock::tail is last thread in list
– New thread uses CompareAndSwap to add to the tail

• Lock is passed by thread releasing the lock setting next-
>needToWait = FALSE;
– Next thread spins while its needToWait is TRUE



MCS In Operation



MCS Lock Implementation
MCSLock::acquire() {

Queue ∗oldTail = tail; 

myTCB−>next = NULL;
myTCB−>needToWait = TRUE;
while (!compareAndSwap(&tail, 

oldTail, &myTCB)) { 
oldTail = tail;

} 
if (oldTail != NULL) { 

oldTail−>next = myTCB;
memory_barrier(); 
while (myTCB−>needToWait)

;
}

}

MCSLock::release() { 
if (!compareAndSwap(&tail, 

myTCB, NULL)) { 
while (myTCB−>next == NULL)

;

myTCB−>next−>needToWait=FALS
E;

}
}



Read-Copy-Update Locks



Read-Copy-Update

• Goal: very fast reads to shared data 
– Reads proceed without first acquiring a lock
– OK if write is (very) slow and infrequent

• Multiple concurrent versions
– Readers may see old version for a limited time

• Restricted update
– Writer computes new version of data structure 
– Publishes new version with a single atomic instruction

• Relies on integration with thread scheduler
– Guarantee all readers complete within grace period, 

and then garbage collect old version



Read-Copy-Update



Read-Copy-Update Implementation

• Readers disable interrupts on entry
– Guarantees they complete critical section in a timely fashion
– Prevents scheduler from running on that core
– No read or write lock

• Writer
– Acquire write lock

• One writer at a time
– Compute new data structure
– Publish new version with atomic instruction
– Release write lock
– Wait for scheduler time slice on each CPU
– Only then, garbage collect old version of data structure



RCU Lock Implementation

void ReadLock() { disableInterrupts(); }
void ReadUnlock() { enableInterrupts(); }
void WriteLock() { writerSpin.lock(); }
void WriteUnlock() { writerSpin.unlock(); }

void publish( void **pp1, void *p2) {
memory_barrier();
*pp1 = p2;   // atomic assignment needed...
memory_barrier();

}



RCU Lock Implementation

// called after each modification (after releasing write lock)
void synchronize() {

c = atomicIncrement(globalCounter);
for (p=0; p<NUM_CORES; p++ )

while (PER_PROC_VAR(quiescentCount,p) < c)
sleep(10);  // about a scheduling quantum

}

// called by scheduler
void QuiescentState() {

memory_barrier();
PER_PROC_VAR(quiescentCount) = globalCounter;
memory_barrier();

}



Deadlock



Deadlock Definition

• Resource: any (passive) thing needed by a 
thread to do its job (CPU, disk space, memory, 
lock)
– Preemptable: can be taken away by OS
– Non-preemptable: must leave with thread

• Starvation: thread waits indefinitely
• Deadlock: circular waiting for resources

– Deadlock => starvation, but not vice versa



Example: two locks

Thread A

lock1.acquire();
lock2.acquire();
lock2.release();
lock1.release();

Thread B

lock2.acquire();
lock1.acquire();
lock1.release();
lock2.release();



Bidirectional Bounded Buffer

Thread A

buffer1.put(data);
buffer1.put(data);

buffer2.get();
buffer2.get();

Thread B

buffer2.put(data);
buffer2.put(data);

buffer1.get();
buffer1.get();

Suppose buffer1 and buffer2 both start almost full.



Two locks and a condition variable
Thread A

lock1.acquire();
…
lock2.acquire();
while (need to wait) {

condition.wait(lock2);
}
lock2.release();
…
lock1.release();

Thread B

lock1.acquire();
…
lock2.acquire();
…
condition.signal(lock2);
…
lock2.release();
…
lock1.release();



Yet another Example



Dining Lawyers

Each lawyer needs two chopsticks to eat. 
Each grabs chopstick on the right first.



Necessary Conditions for Deadlock

1. Limited access to resources
– If infinite resources, no deadlock!

2. No preemption
– If resources are preemptable, can break deadlock

3. Hold and Wait
– Threads don’t voluntarily give up resources

4. Circular chain of requests



Question

• How does Dining Lawyers meet the necessary 
conditions for deadlock?
– Limited access to resources
– No preemption
– Hold and wait
– Circular chain of requests

• How can we modify Dining Lawyers to prevent 
deadlock?



Preventing and Avoiding Deadlock



Preventing Deadlock

• Make sure at least one of the four conditions 
can’t hold by
– Exploit or limit program behavior

• Limit program from doing anything that might lead to 
deadlock

– Predict the future
• If we know what program will do, we can tell if granting a 

resource might lead to deadlock
– Detect and recover

• If we can rollback a thread, we can fix a deadlock once it 
occurs



Exploit or Limit Behavior

• Provide enough resources
– How many chopsticks are enough?

• Eliminate wait while holding
– Release lock when calling out of module
– Acquire all locks at once, or none

• Eliminate circular waiting
– Lock ordering: always acquire locks in a fixed order
– Example: move file from one directory to another



Example

Thread 1

1. Acquire A
2.
3. Acquire C
4.
5. If (cond) Acquire B

Thread 2

1.
2. Acquire B
3.
4. Wait for A

How can we “pause” thread execution to 
make sure to avoid deadlock?



Deadlock Dynamics

• Safe state:
– For any possible sequence of future resource 

requests, it is possible to eventually grant all 
requests (perhaps by delaying some requests)

• Unsafe state:
– Some sequence of resource requests can result in 

deadlock, even if you delay allocating resources
• Doomed state:

– All possible computations lead to deadlock



Possible System States



Question

• What are the doomed states for Dining 
Lawyers?

• What are the unsafe states?

• What are the safe states?



Communal Dining Lawyers

• n chopsticks in middle of table 
• n lawyers, each can take one chopstick at a 

time
• What are the safe states?
• What are the unsafe states?
• What are the doomed states?



Communal Mutant Dining Lawyers

• N chopsticks in the middle of the table
• N lawyers, each takes one chopstick at a time
• Lawyers need k chopsticks to eat, k > 1

• What are the safe states?
• What are the unsafe states?
• What are the doomed states?



Avoiding Deadlock: Predict the Future

• Banker’s algorithm
1. Threads state maximum resource needs in 

advance

• Aside (from Banker’s Alg)
• If the app knows the maximum resources it can 

possibly want going forward, how could we 
prevent deadlock?



Avoiding Deadlock: Predict the Future

• Banker’s algorithm
1. Threads state maximum resource needs in 

advance
2. Allocate resources dynamically when resource is 

needed
1. wait if granting request could lead to deadlock

– Request can be granted if some sequential 
ordering of threads is deadlock free



Banker’s Algorithm
• Grant request iff result is a safe state

– i.e., not an unsafe state
• Sum of maximum resource needs of current threads 

can be greater than the total resources
– Provided there is some way for all the threads to finish 

without getting into deadlock even if all request their 
maximum

• Example: proceed if
– total available resources - # allocated >= max remaining 

that might be needed by this thread in order to finish
– Guarantees this thread can finish

• Is this condition necessary?



Detect and Repair

• Algorithm
– Scan wait for graph
– Detect cycles
– Fix cycles

• Proceed without the resource
– Requires robust exception handling code

• Roll back and retry
– Transaction: all operations are provisional until have 

all required resources to complete operation



Detecting Deadlock



Non-blocking algorithms
• An algorithm is non-blocking if a slow thread cannot 

prevent another faster thread from making progress
– Using locks is not non-blocking because a thread may 

acquire the lock and then run really really slowly
• (Why?)

• Non-blocking algorithms are often built on an atomic
hardware instruction, Compare And Swap (CAS)

bool CAS(ptr, old, new) {
if ( *ptr == old ) { *ptr = new;  return true; }
return false;

}



Non-blocking atomic integer

• int atomic_int_add(atomic_int *p, int val) {
int oldval;
do { 

oldval = *p;
} while ( ! CAS(p, oldval, oldval+val) );

• What happens if multiple threads execute this 
concurrently?
– Does every thread make progress?
– Does at least one thread make progress in bounded 

number of steps?



Why non-blocking

• What if a thread is pre-empted while holding a 
lock?

• If there are no locks, can there be deadlock?

• Priority inversion
– Suppose a low priority thread holds a lock needed 

by a high priority thread
– (Alternative solution: priority inheritance)



Why not non-blocking?
(Non-blocking FIFO implementation)

Pointers are stored with a generation number in one 8-byte quantity
(32-bit pointer + 32-bit generation number)

From Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms
by Michael & Scott.



Non-blocking FIFO: enqueue()



Non-blocking FIFO: dequeue



Performance Results

12 processor Silicon Graphics Challenge
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