
Synchronization
Module 6

Implementing
Synchronization

Synchronization Variable
Interfaces

● (spin) lock
● acquire() / release() [lock()/unlock()]

● (blocking) lock [mutex]
● acquire() / release() [lock()/unlock()]

● Semaphore(int n)
● P – if value <= 0 then wait; decrement value
● V – increment value; if there is a waiter, wake one up

● Condition variable(lock)
● wait() - suspend this thread and release lock
● signal() - wake up one waiting thread, if there is one, and regain its lock
● broadcast() - wake up all waiting threads, if any, and let them battle for

lock

Question: Can this panic?

Thread 1

p = someComputation();

pInitialized = true;

Thread 2

while (!pInitialized)

 ;

q = someFunction(p);

if (q != someFunction(p))

 panic

Will this code work?

if (p == NULL) {
 lock.acquire();
 if (p == NULL) {
 p = newP();
 }
 lock.release();
}
use p->field1

newP() {
 p = malloc(sizeof(p));
 p->field1 = …
 p->field2 = …
 return p;
}

Why Reordering?
• Why do compilers reorder instructions?

– Efficient code generation requires analyzing control/data
dependency

– If variables can spontaneously change, most compiler
optimizations become impossible

• Why do CPUs reorder instructions?
– Write buffering: allow next instruction to execute while write is

being completed

Fix: memory barrier
– Instruction to compiler/CPU

– All ops before barrier complete before barrier returns

– No op after barrier starts until barrier returns

Implementing Synchronization

Take 1: using memory load/store
– See too much milk solution/Peterson’s algorithm

Take 2:
Lock::acquire()

 { disable interrupts }

Lock::release()

 { enable interrupts }

Spinlock Implementation in
xk

void acquire(struct spinlock *lk) {
 pushcli(); // disable interrupts to avoid deadlock.
 if (holding(lk))
 panic("acquire");

 // The xchg is atomic.
 while (xchg(&lk->locked, 1) != 0)
 ;

 // Tell the C compiler and the processor to not move loads or stores
 // past this point, to ensure that the critical section's memory
 // references happen after the lock is acquired.
 __sync_synchronize();

 // Record info about lock acquisition for debugging.
 lk->cpu = mycpu();
 getcallerpcs(&lk, lk->pcs);
}

Spinlock Implementation in
xk

void release(struct spinlock *lk) {
 if (!holding(lk))
 panic("release");

 lk->pcs[0] = 0;
 lk->cpu = 0;

 __sync_synchronize();

 // Release the lock, equivalent to lk->locked = 0.
 // This code can't use a C assignment, since it might
 // not be atomic. A real OS would use C atomics here.
 asm volatile("movl $0, %0" : "+m"(lk->locked) :);

 popcli();
}

Multiprocessor

• Read-modify-write instructions
– Atomically read a value from memory, operate on

it, and then write it back to memory
– Intervening instructions prevented in hardware

• Examples
– Test and set
– Intel: xchgb, lock prefix
– Compare and swap

• Any of these can be used for implementing locks and
condition variables!

Spinlocks

A spinlock is a lock where the processor waits in a loop for the
lock to become free
– Assumes lock will be held for a short time
– Used to protect the CPU scheduler and to implement

locks

Spinlock::acquire() {

 while (testAndSet(&lockValue) == BUSY)

 ;

}

Spinlock::release() {

 lockValue = FREE;

 memorybarrier();

}

How many spinlocks?

• Various data structures
– Queue of waiting threads on lock X
– Queue of waiting threads on lock Y
– List of threads ready to run

• One spinlock per kernel?
– Bottleneck!

• Instead:
– One spinlock per blocking lock
– One spinlock for the scheduler ready list

• Per-core ready list: one spinlock per core

Mutex Implementation,
Uniprocessor

Lock::acquire() {
 disableInterrupts();
 if (value == BUSY) {

 waiting.add(myTCB);
 myTCB->state = WAITING;

 next = readyList.remove();
 switch(myTCB, next);

 myTCB->state = RUNNING;
 } else {
 value = BUSY;

 }
 enableInterrupts();

}

Lock::release() {
 disableInterrupts();

 if (!waiting.Empty()) {

 next = waiting.remove();

 next->state = READY;
 readyList.add(next);

 } else {
 value = FREE;

 }
 enableInterrupts();

}

Lock Implementation,
Multiprocessor

Lock::acquire() {

 disableInterrupts();

 spinLock.acquire();

 if (value == BUSY) {

 waiting.add(myTCB);

 suspend(&spinlock);

 } else {

 value = BUSY;

 }

 spinLock.release();

 enableInterrupts();

}

Lock::release() {

 disableInterrupts();

 spinLock.acquire();

 if (!waiting.Empty()) {

 next = waiting.remove();

 scheduler->makeReady(next);

 } else {
 value = FREE;

 }

 spinLock.release();

 enableInterrupts();

}

What thread is currently
running?

• Thread scheduler needs to find the TCB of the currently
running thread
– To suspend and switch to a new thread
– To check if the current thread holds a lock before

acquiring or releasing it

• On a uniprocessor, easy: just use a global
• On a multiprocessor, various methods:

– Compiler dedicates a register (e.g., r31 points to TCB
running on the this CPU; each CPU has its own r31)

– If hardware has a special per-processor register, use it
– Fixed-size stacks: put a pointer to the TCB at the bottom

of its stack
• Find it by masking the current stack pointer

Lock Implementation, Linux

• Most locks are free most of the time
– Why?
– Linux implementation takes advantage of this fact

• Fast path
– If lock is FREE, and no one is waiting, two instructions to

acquire the lock
– If no one is waiting, two instructions to release the lock

• Slow path
– If lock is BUSY or someone is waiting, use multiproc impl.

• User-level locks
– Fast path: acquire lock using test&set
– Slow path: system call to kernel, use kernel lock

Lock Implementation, Linux

struct mutex {
 /∗ 1: unlocked ; 0: locked;

negative : locked,
possible waiters ∗/

 atomic_t count;

 spinlock_t wait_lock;

 struct list_head wait_list;

};

// atomic decrement
// %eax is pointer to count

lock decl (%eax)

jns 1 // jump if not signed

 // (if value is now 0)
call slowpath_acquire

1:

Semaphores

• Semaphore has a non-negative integer value
– P() atomically waits for value to become > 0, then

decrements
– V() atomically increments value (waking up waiter if

needed)

• Semaphores are like integers except:
– Only operations are P and V
– Operations are atomic

• If value is 1, two P’s will result in value 0 and one waiter

Semaphore Bounded Buffer

get() {

 fullSlots.P();

 mutex.P();

 item = buf[front % MAX];

 front++;

 mutex.V();

 emptySlots.V();

 return item;

}

put(item) {

 emptySlots.P();

 mutex.P();

 buf[last % MAX] = item;

 last++;

 mutex.V();

 fullSlots.V();

}

Initially: front = last = 0; MAX is buffer capacity
mutex = 1; emptySlots = MAX; fullSlots = 0;

Communicating Sequential Processes
(CSP/Google Go)

• A thread per shared object
– Only thread allowed to touch object’s data
– To call a method on the object, send thread a

message with method name, arguments
– Thread waits in a loop, get msg, do operation

• No memory races (in user code)!

Bounded Buffer (CSP)
while (cmd = getNext()) {

 if (cmd == GET) {

 if (front < tail) {

 // do get
 // send reply

 // if pending put, do it

 // and send reply

 } else

 // queue get operation
 }

 } else { // cmd == PUT

 if ((tail – front) < MAX) {

 // do put

 // send reply
 // if pending get, do it

 // and send reply

 } else

 // queue put operation
}

Locks/CVs vs. CSP

• Create a lock on shared data
= create a single thread to operate on data

• Call a method on a shared object
 = send a message/wait for reply

• Wait for a condition
= queue an operation that can’t be completed just

yet

• Signal a condition
= perform a queued operation, now enabled

“Rules” for Using
Synchronization

• Use consistent structure
• Always use locks and condition variables
• Always acquire lock at beginning of

procedure, release at end
• Always hold lock when using a condition

variable
• Always wait in while loop
• Never spin in sleep()

	Slide 1
	Implementing Synchronization_clipboard0
	Slide 3
	Question: Can this panic?
	Will this code work?
	Why Reordering?
	Implementing Synchronization
	Slide 8
	Slide 9
	Multiprocessor
	Spinlocks
	How many spinlocks?
	Lock Implementation, Uniprocessor
	Lock Implementation, Multiprocessor
	What thread is currently running?
	Lock Implementation, Linux
	Lock Implementation, Linux
	Semaphores
	Semaphore Bounded Buffer
	Communicating Sequential Processes (CSP/Google Go)
	Bounded Buffer (CSP)
	Locks/CVs vs. CSP
	Remember the rules

