Synchronization
Module 6



Implementing
Synchronization

Concurrent Applications

Semaphores Locks Condition Variables

Imterrupt Disable Atomic Read/Modify\Write Instructions

Multiple Processors Hardwiare Interrupts



Synchronization Variable
Interfaces

* (spin) lock
* acquire() / release() [lock()/unlock()]

* (blocking) lock [mutex]
* acquire() / release() [lock()/unlock()]

* Semaphore(int n)
* P —if value <= 0 then wait; decrement value
* V —increment value; if there is a waiter, wake one up

* Condition variable(lock)
* wait() - suspend this thread and release lock
 signal() - wake up one waiting thread, if there is one, and regain its lock
* broadcast() - wake up all waiting threads, if any, and let them battle for
lock



Question: Can this panic?

Thread 1

p = someComputation();
pinitialized = true;

Thread 2

while (!plInitialized)

g = someFunction(p);

iIf (q !'=someFunction(p))
panic



Wil this code work?

if (p == NULL) { newP() {
lock.acquire(); p = malloc(sizeof(p));
if (p == NULL) { p->fieldl = ...
P = newP(); p->field2 = ...
} return p;
lock.release(); }
}

use p->fieldl



Why Reordering?

« Why do compilers reorder instructions?

— Efficient code generation requires analyzing control/data
dependency

— If variables can spontaneously change, most compiler
optimizations become impossible

e Why do CPUs reorder instructions?

— Write buffering: allow next instruction to execute while write is
being completed

Fix: memory barrier
— Instruction to compiler/CPU
— All ops before barrier complete before barrier returns
— No op after barrier starts until barrier returns



Implementing Synchronization

Take 1: using memory load/store
— See too much milk solution/Peterson’s algorithm

Take 2:
Lock::acquire()
{ disable interrupts }
Lock::release()
{ enable interrupts }



Spinlock Implementation
xk

void acquire(struct spinlock *Ik) {
pushcli(); // disable interrupts to avoid deadlock.
if (holding(lk))
panic("acquire");

I/l The xchg is atomic.
while (xchg(&lk->locked, 1) I= 0)

I/ Tell the C compiler and the processor to not move loads or stores
/[ past this point, to ensure that the critical section's memory

Il references happen after the lock is acquired.
__sync_synchronize();

// Record info about lock acquisition for debugging.
lk->cpu = mycpu();
getcallerpcs(&lk, Ik->pcs);



Spinlock Implementation In
xk

void release(struct spinlock *lk) {
if ("holding(lk))
panic(“release");

lk->pcs[0] = 0;
lk->cpu = 0;

__sync_synchronize();
I/l Release the lock, equivalent to Ik->locked = 0.
// This code can't use a C assignment, since it might

/I not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m"(lk->locked) :);

popcli();



Multiprocessor

Read-modify-write instructions

— Atomically read a value from memory, operate on
it, and then write it back to memory

— Intervening instructions prevented in hardware
Examples

— Test and set

— Intel: xchgb, lock prefix

— Compare and swap

Any of these can be used for implementing locks and
condition variables!



Spinlocks

A spinlock is a lock where the processor waits in a loop for the
lock to become free

— Assumes lock will be held for a short time

— Used to protect the CPU scheduler and to implement
locks

Spinlock::acquire() {

while (testAndSet(&lockValue) == BUSY)
}
Spinlock::release() {

lockValue = FREE;

memorybarrier();

}



How many spinlocks?

* Various data structures
— Queue of waiting threads on lock X
— Queue of waiting threads on lock Y
— List of threads ready to run

* One spinlock per kernel?
— Bottleneck!
* Instead:

— One spinlock per blocking lock

— One spinlock for the scheduler ready list
* Per-core ready list: one spinlock per core



Mutex Implementation,
Uniprocessor

Lock::acquire() { Lock::release() {
disablelnterrupts(); disablelnterrupts();
if (value == BUSY) { if ('waiting.Empty()) {

Wa:’?Bg.adS(’EnchvsX|T|NG next = waiting.remove();
-> = ,
my State ’ next->state = READY;

next = readyList.remove();

switch(myTCB, next): readyList.add(next);
myTCB->state = RUNNING; 1 €lse {
} else { value = FREE;
value = BUSY; }
} enablelnterrupts();
enablelnterrupts(); }

}



Lock Implementation,
Multiprocessor

Lock::acquire() { Lock::release() {
disablelnterrupts(); disablelnterrupts();
spinLock.acquire(); spinLock.acquire();
if (value == BUSY) { if (waiting.Empty()) {

waiting.add(myTCB); next = waiting.remove();
suspend(&spinlock); scheduler->makeReady(next);
} else { } else {
value = BUSY: value = FREE;
} }
spinLock.release(); spinLock.release();
enablelnterrupts(); enablelnterrupts();

} }



What thread is currently
running?

Thread scheduler needs to find the TCB of the currently
running thread

— To suspend and switch to a new thread

— To check if the current thread holds a lock before
acquiring or releasing it

On a uniprocessor, easy: just use a global

On a multiprocessor, various methods:

— Compiler dedicates a reqgister (e.qg., r31 points to TCB
running on the this CPU; each CPU has its own r31)

— If hardware has a special per-processor register, use it

— Fixed-size stacks: put a pointer to the TCB at the bottom
of its stack

* Find it by masking the current stack pointer



Lock Implementation, Linux

Most locks are free most of the time

— Why?

— Linux implementation takes advantage of this fact
Fast path

— If lock is FREE, and no one is waiting, two instructions to
acquire the lock

— If no one is waiting, two instructions to release the lock
Slow path
— If lock is BUSY or someone is waiting, use multiproc impl.

User-level locks
— Fast path: acquire lock using test&set
— Slow path: system call to kernel, use kernel lock



Lock Implementation, Linux

struct mutex { /| atomic decrement
/* 1: unlocked ; O: locked; // %eax is pointer to count
negative : IOCked, lock decl (%eax)

possible waiters x/
atomic_t count;
spinlock t wait_lock;
struct list_head wait_list;

};

jns 1 // jump if not signed
// (if value is now 0)
call slowpath _acquire



Semaphores

 Semaphore has a non-negative integer value

— P() atomically walits for value to become > 0, then
decrements

— V() atomically increments value (waking up waiter if
needed)

 Semaphores are like integers except:
— Only operations are P and V

— Operations are atomic
 |f valueis 1, two P’s will result in value 0 and one waiter



Semaphore Bounded Buffer

get() { put(item) {
fullSlots.P(); emptySlots.P();
mutex.P(); mutex.P();
item = buf[front % MAX]; buf[last % MAX] = item;
front++; last++;
mutex.V(); mutex.V();
emptySlots.V(); fullSlots.V();
return item; }

}

Initially: front = last = 0; MAX is buffer capacity
mutex = 1; emptySlots = MAX; fullSlots = 0O;



Communicating Sequential Processes
(CSP/Google Go)

* A thread per shared object
— Only thread allowed to touch object’s data

— To call a method on the object, send thread a
message with method name, arguments

— Thread walits in a loop, get msg, do operation
« No memory races (in user code)!



Bounded Buffer (CSP)

while (cmd = getNext()) {
if (cmmd == GET) {

if (front < tail) { } else { // cmd == PUT
// do get if ((tail - front) < MAX) {
/] send reply // do put
// if pending put, do it // send reply
// and send reply // if pending get, do it
} else // and send reply
// queue get operation 1 else
) // queue put operation



Locks/CVs vs. CSP

Create a lock on shared data

= create a single thread to operate on data
Call a method on a shared object

= send a message/wait for reply
Wait for a condition

= queue an operation that can’t be completed just
yet

Signal a condition
= perform a queued operation, now enabled



“Rules” for Using
Synchronization

Use consistent structure
Always use locks and condition variables

Always acquire lock at beginning of
procedure, release at end

Always hold lock when using a condition
variable

Always wait in while loop
Never spin in sleep()



	Slide 1
	Implementing Synchronization_clipboard0
	Slide 3
	Question: Can this panic?
	Will this code work?
	Why Reordering?
	Implementing Synchronization
	Slide 8
	Slide 9
	Multiprocessor
	Spinlocks
	How many spinlocks?
	Lock Implementation, Uniprocessor
	Lock Implementation, Multiprocessor
	What thread is currently running?
	Lock Implementation, Linux
	Lock Implementation, Linux
	Semaphores
	Semaphore Bounded Buffer
	Communicating Sequential Processes (CSP/Google Go)
	Bounded Buffer (CSP)
	Locks/CVs vs. CSP
	Remember the rules

