
CSE 451: Operating Systems
Autumn 2019

Module 4
Processes

John Zahorjan

Process management

• This module begins a series of topics on processes,
threads, and synchronization
– this is the most important part of the class
– there definitely will be several questions on these topics on

the midterm
• In this module: processes and process management

– What is a “process”?
– What’s the OS’s process namespace?
– How are processes represented inside the OS?
– What are the executing states of a process?
– How are processes created?
– How can this be made faster?
– Shells
– Signals

What is a “process”?

• The process is the OS’s abstraction for execution
– A process is a program in execution

• Simplest (classic) case: a sequential process
– An address space (an abstraction of memory)
– A single thread of execution (an abstraction of the CPU)

• A sequential process is:
– The unit of execution
– The unit of scheduling
– The dynamic (active) execution context

• vs. the program – static, just a bunch of bytes

address space

thread

What’s “in” a process?

• A process consists of (at least):
– An address space, containing

• the code (instructions) for the running program
• the data for the running program (static data, heap data, stack)

– CPU state, consisting of
• The program counter (PC), indicating the next instruction
• The stack pointer
• Other general purpose register values

– A set of OS resources
• open files, network connections, sound channels, …

• In other words, it’s all the stuff you need to run the
program
– or to re-start it, if it’s interrupted at some point

A process’s address space (idealized)

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

The OS’s process namespace

• (Like most things, the particulars depend on the
specific OS, but the principles are general)

• The name for a process is called a process ID (PID)
– An integer

• The PID namespace is global to the system
– Only one process at a time has a particular PID

• Operations that create processes return a PID
– E.g., fork()

• Operations on processes take PIDs as an argument
– E.g., kill(), wait(), nice()

• The OS maintains a data structure to keep track of a process’s state
– Called the process control block (PCB) or process descriptor
– Identified by the PID

• OS keeps all of a process’s execution state in (or linked from) the
PCB when the process isn’t running
– PC, SP, registers, etc.
– when a process is unscheduled, the execution state is transferred out of

the hardware registers into the PCB
– (when a process is running, its state is spread between the PCB and the

CPU)

• Note: It’s natural to think that there must be some esoteric
techniques being used
– fancy data structures that you’d never think of yourself

Wrong! It’s pretty much just what you’d think of!

Representation of processes by the OS

The PCB

• The PCB is a data structure with many, many fields:
– process ID (PID)
– parent process ID (PPID)
– execution state
– program counter, stack pointer, registers
– address space info
– UNIX user id (uid), group id (gid)
– scheduling priority
– accounting info
– pointers for state queue
– …

PCBs and CPU state
• When a process is running, its CPU state is inside the

CPU
– PC, SP, registers
– CPU contains current values

• When the OS gets control because of a …
– Trap: Program executes a syscall
– Exception: Program does something unexpected (e.g., page

fault)
– Interrupt: A hardware device requests service

the OS saves the CPU state of the running process in
that process’s PCB

• When the OS returns the process to the running state, it
loads the hardware registers with values from that
process’s PCB – general purpose registers, stack
pointer, instruction pointer

• The act of switching the CPU from one process to
another is called a context switch
– systems may do 100s or 1000s of switches/sec.
– takes a few microseconds on today’s hardware

• Choosing which process to run next is called scheduling

The OS kernel is not a process

• It’s just a block of code!

• (In a microkernel OS, many things that you normally
think of as the operating system execute as user-
mode processes. But the OS kernel is just a block of
code.)

This is (a
simplification of)

what each of
those PCBs looks

like inside!

Process ID

Pointer to parent

List of children

Process state

Pointer to address space descriptor

Program counter
stack pointer

(all) register values

uid (user id)
gid (group id)

euid (effective user id)

Open file list

Scheduling priority

Accounting info

Pointers for state queues

Exit (“return”) code value

Process execution states

• Each process has an execution state, which indicates what it’s
currently doing
– ready: waiting to be assigned to a CPU

• could run, but another process has the CPU
– running: executing on a CPU

• it’s the process that currently controls the CPU
– waiting (aka “blocked”): waiting for an event, e.g., I/O completion, or

a message from (or the completion of) another process
• cannot make progress until the event happens

• As a process executes, it moves from state to state
– UNIX: run ps, STAT column shows current state
– which state is a process in most of the time?

Process states and state transitions

running

ready

blocked

trap or exception
(I/O, page fault,

etc.)

interrupt
(unschedule)

dispatch /
schedule

interrupt
(I/O complete)

You can create
and destroy
processes!

create

terminate

State queues

• The OS maintains a collection of queues that
represent the state of all processes in the system
– typically one queue for each state

• e.g., ready, waiting, …
– each PCB is queued onto a state queue according to the

current state of the process it represents
– as a process changes state, its PCB is unlinked from one

queue, and linked onto another

• Once again, this is just as straightforward as it
sounds! The PCBs are moved between queues,
which are represented as linked lists. There is no
magic!

State queues

• There may be many wait queues, one for each type
of wait (particular device, timer, message, …)

head ptr
tail ptr

firefox (1365) emacs (948) ls (1470)

cat (1468) firefox (1207)head ptr
tail ptr

Wait queue header

Ready queue header

These are PCBs!

PCBs and state queues

• PCBs are data structures
– dynamically allocated inside OS memory

• When a process is created:
– OS allocates a PCB for it
– OS initializes PCB
– (OS does other things not related to the PCB)
– OS puts PCB on the correct queue

• As a process computes:
– OS moves its PCB from queue to queue

• When a process is terminated:
– PCB may be retained for a while (to receive signals, etc.)
– eventually, OS deallocates the PCB

Process creation

• New processes are created by existing processes
– creator is called the parent
– created process is called the child

• UNIX: do ps, look for PPID field
– what creates the first process, and when?

• $ ps –ejH
– prints process tree

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Process creation semantics

• (Depending on the OS) child processes inherit certain
attributes of the parent
– Examples:

• Open file table: implies stdin/stdout/stderr
• On some systems, resource allocation to parent may be divided

among children

• (In Unix) when a child is created, the parent may
either wait for the child to finish, or continue in
parallel

UNIX process creation details
• UNIX process creation through fork() system call

– creates and initializes a new PCB
• initializes kernel resources of new process with resources of parent

(e.g., open files)
• initializes PC, SP to be same as parent

– creates a new address space
• initializes new address space with a copy of the entire contents of the

address space of the parent
– places new PCB on the ready queue

• the fork() system call “returns twice”
– once into the parent, and once into the child
– value returned from call depends...

• returns the child’s PID to the parent
• returns 0 to the child

• fork() = “make a copy of me in my current state”

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

$./myProgram

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child address
space

(code, static
data, heap,

stack)

Child
PCB

identical
copy

(with sole
exception

of PID
argument
on the top

of the
stack)

similar, but different
in key ways

$./myProgram

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

testparent – use of fork()
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{
char *name = argv[0];
int pid = fork();
if (pid == 0) {
printf(“Child of %s is %d\n”, name, pid);
return 0;

} else {
printf(“My child is %d\n”, pid);
return 0;

}
}

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

testparent output

spinlock% gcc -o testparent testparent.c
spinlock% ./testparent
My child is 486
Child of testparent is 0
spinlock% ./testparent
Child of testparent is 0
My child is 571

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

exec() vs. fork()
• Q: So how do we start a new program, instead of

just forking the old program?
• A: First fork, then exec

– int exec(char * prog, char * argv[])

• exec()
– stops the current process
– loads program ‘prog’ into the address space

• i.e., over-writes the existing process image
– initializes hardware context, args for new program
– places PCB onto ready queue
– note: does not create a new process!

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

• So, to run a new program:
– fork()
– Child process does an exec()
– Parent either waits for the child to complete, or not

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

$./myProgram

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child address
space

(code, static
data, heap,

stack)

Child
PCB

identical
copy

(with sole
exception

of PID
argument
on the top

of the
stack)

similar, but different
in key ways

$./myProgram

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child address
space

(code, static
data, heap,

stack)

Child
PCB

$./myProgram

After exec of
./myProgram

Making process creation faster

• The semantics of fork() say the child’s address space
is a copy of the parent’s

• Implementing fork() that way is slow
– Have to allocate physical memory for the new address space
– Have to set up child’s page tables to map new address

space
– Have to copy parent’s address space contents into child’s

address space
• Which you are likely to immediately blow away with an exec()

Method 1: vfork()

• vfork() is the older (now uncommon) of the two
approaches we’ll discuss

• Instead of “child’s address space is a copy of the
parent’s,” the semantics are “child’s address space is
the parent’s”
– With a “promise” that the child won’t modify the address space

before doing an execve()
• Unenforced! You use vfork() at your own peril

– When execve() is called, a new address space is created and
it’s loaded with the new executable

– Parent is blocked until execve() is executed by child
– Saves wasted effort of duplicating parent’s address space,

just to blow it away

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child
PCB

similar, but different
in key ways

Vfork()

Page
Tables Physical

Memory

Method 2: copy-on-write

• Retains the original semantics, but copies “only what
is necessary” rather than the entire address space

• On fork():
– Create a new address space
– Initialize page tables with same mappings as the parent’s

(i.e., they both point to the same physical memory)
• No copying of address space contents have occurred at this

point – with the sole exception of the top page of the stack
– Set both parent and child page tables to make all pages

read-only
– If either parent or child writes to memory, an exception

occurs
– When exception occurs, OS copies the page, adjusts page

tables, etc.

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child
PCB

similar, but different
in key ways

Vfork()

RO Page
Tables

Child address
space

(code, static
data, heap,

stack)

RO Page
Tables

Inter-process communication (IPC)

• Processes provide isolation (protection) – great!

• But sometimes you want processes to communicate / cooperate

• How can one process “provide input” to another?

Inter-process communication (IPC)

• Processes provide isolation (protection) – great!

• But sometimes you want processes to communicate / cooperate

• How can one process “provide input” to another?
1. command line arguments (argv values)

• available only to parent process
2. communicate through files

• one writes and the other reads
3. optimize that: pipes

• use memory buffers, not files
• We’ll see that this works only if the processes are related (usually

siblings)
4. environment variables

• Why?

IPC (cont).

• Additional mechanisms:
5. named pipes

• like pipes, except that unrelated processes can use them
– need a namespace

» use file system names
• man 3 mkfifo

6. named shared memory regions
• shm_open() followed by mmap()
• “cut out the middle man”

7. sockets / Internet protocols
• robust – prepared to communicate using a heavyweight middle

man!
• optimized when endpoints are on the same machine

IPC: signals

• Processes can register event handlers
– Feels a lot like event handlers in Java, which ..
– Feel sort of like catch blocks in Java programs
– sigaction()

• When the event occurs, process jumps to event handler routine
• Used to catch exceptions

– signal generated by the OS
– gives the application a chance to do something other than the

default response to the exception
• Also used for inter-process (process-to-process) communication

(IPC)
– signal is generated by another process
– send signal using kill (man 2 kill)
– Only argument of the communication is a single int, the signal

number

Signals
 Signal Value Action Comment

 SIGHUP 1 Term Hangup detected on controlling terminal
 or death of controlling process
 SIGINT 2 Term Interrupt from keyboard
 SIGQUIT 3 Core Quit from keyboard
 SIGILL 4 Core Illegal Instruction
 SIGABRT 6 Core Abort signal from abort(3)
 SIGFPE 8 Core Floating point exception
 SIGKILL 9 Term Kill signal
 SIGSEGV 11 Core Invalid memory reference
 SIGPIPE 13 Term Broken pipe: write to pipe with no read
 SIGALRM 14 Term Timer signal from alarm(2)
 SIGTERM 15 Term Termination signal
 SIGUSR1 30,10,16 Term User-defined signal 1
 SIGUSR2 31,12,17 Term User-defined signal 2
 SIGCHLD 20,17,18 Ign Child stopped or terminated
 SIGCONT 19,18,25 Continue if stopped
 SIGSTOP 17,19,23 Stop Stop process
 SIGTSTP 18,20,24 Stop Stop typed at tty
 SIGTTIN 21,21,26 Stop tty input for background process
 SIGTTOU 22,22,27 Stop tty output for background process

Example use
• You're implementing Apache, a web server

• Apache reads a configuration file when it is launched
– Controls things like what the root directory of the web files

is, what permissions there are on pieces of it, etc.

• Suppose you want to change the configuration while
Apache is running
– If you restart the currently running Apache, you drop some

unknown number of user connections

• Solution: send the running Apache process a signal
– It has registered an signal handler that gracefully re-reads

the configuration file

Unix Shells

• Shells are just user-level programs

• They’re mainly oriented towards launching other programs
– Using fork() / exec()

• They typically have few “built-in” commands
– ls, cat, etc. are executables, opaque to the shell
– (What must be built in?)

• Shells usually offer ways to build “shell scripts”
– E.g., some looping construct
– You can view everything you type into a shell as a program that is

being simultaneously created and executed

UNIX shells – basic operation
int main(int argc, char **argv)
{
while (1) {
printf (“$ “);
char *cmd = get_next_command();
int pid = fork();
if (pid == 0) {

exec(cmd);
panic(“exec failed!”);

} else {
wait(pid);

}
}

}

Unix Shells: Jobs / Redirection

• Shells usually offer ways to make “jobs” –
assemblages of executions
– ls | grep *.c | less
– pushd sub && make && popd
– pushd sub; make; popd

• One way the shell helps you compose jobs is by
input-output redirection
– You can make the output of one program the input of

another, without ever writing to a file

Input/output redirection

• $./myprog < input.txt > output.txt # UNIX
– each process has an open file table
– by (universal) convention:

• 0: stdin
• 1: stdout
• 2: stderr

• A child process inherits the parent’s open file table

• Redirection: the shell …
– copies its current stdin/stdout open file entries
– opens input.txt as stdin and output.txt as stdout
– fork …
– restore original stdin/stdout

Linux Job Control
• A “job” is an assemblage of processes

– $ cat main.c
– $ cat main.c | grep –w total | less

• Key concepts:
– Controlling terminal

• Follow parent PIDs up to “the top”
• What is that processes stdin/stdout/stderr connected to?
• Why does it matter?

– Session
• A way to group things that should be terminated if the controlling terminal goes

away
• “Session leader” – process that created the session
• Sessions are named by integers

– Use PID of the session leader
• A forked process inherits the session of its parent
• A process can set its own session id (setsid)

– Unless it’s a “process group leader”

Linux Job Control

• Process Group
– $ myprog | myotherprog | grep B
– A process inherits the process group of its parent
– A process can set its process group (setpgid)
– The “process group leader” is the process that created the

group
– The process group’s name is an integer

• The PID of the creating process

• Why have process groups?
– Ctrl-C sends a SIGINT
– A signal can be sent to a process group

• Sent to each process in the group

	CSE 451: Operating Systems�Autumn 2019��Module 4�Processes
	Process management
	What is a “process”?
	What’s “in” a process?
	A process’s address space (idealized)
	The OS’s process namespace
	Representation of processes by the OS
	The PCB
	PCBs and CPU state
	Slide Number 10
	The OS kernel is not a process
	Slide Number 12
	Process execution states
	Process states and state transitions
	State queues
	State queues
	PCBs and state queues
	Process creation
	Slide Number 19
	Process creation semantics
	UNIX process creation details
	Slide Number 22
	Slide Number 23
	testparent – use of fork()
	testparent output
	exec() vs. fork()
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Making process creation faster
	Method 1: vfork()
	Slide Number 33
	Method 2: copy-on-write
	Slide Number 35
	Inter-process communication (IPC)
	Inter-process communication (IPC)
	IPC (cont).
	IPC: signals
	Signals
	Example use
	Unix Shells
	UNIX shells – basic operation
	Unix Shells: Jobs / Redirection
	Input/output redirection
	Linux Job Control
	Linux Job Control

