CSE 451: Operating Systems
Spring 2017

Module 3

Operating System
Components and Structure

John Zahorjan

OS structure

« The OS sits between application programs and the
hardware
— it mediates access and abstracts away ugliness
— programs request services via traps or exceptions
— devices request attention via interrupts

User Apps

e

Operating System

Chrome || Photoshop || Acrobat JVM
Application Interface (API)

File Memory Process Network
Systems Manager Manager Support
Device Interrupt Boot &

Drivers Handlers Init

~

a1qeHO]

Hardware Abstraction Layer

Hardware (CPU, devices)

[Command Interpreter]

el
Information Seryice
[nformation /r// \\

[Er"r'or' Handling Accounting Sys‘rem)

77T\
/r'é’rec‘rion Syst

/ [/

File System
4 >

Process Management

Secc’;ndar'y Stgrage
Management Managerpent
ir\é/ 7

170 System

© 0N O b=

Part |: Major OS components

processes/threads

memory

/O

secondary storage

file systems

protection

shells (command interpreter, or OS Ul)
windowing system

networking

1. Process management

* An OS executes many kinds of activities:
— users’ programs
— background jobs or scripts
— system programs
« print managers, name servers, file servers, network daemons,

« Each of these activities is encapsulated in a process
— a process is a running program

— a process has an execution context
« PC, registers, VM maps, OS resources (e.g., open files), etc...
 plus the program itself (code and data)

— the OS’s process module manages these processes
 creation, destruction, scheduling, ...

Processes vs. Threads

e Soon, we will separate the “thread of control” aspect
of a process (program counter, call stack) from its
other aspects (address space, open files, owner,
etc.). And we will allow each {process / address
space} to have multiple threads of control.

« But for now — for simplicity and for historical reasons
— consider each {process / address space} to have a
single thread of control.

Program / processor / process

* Note that a program is totally passive
— just bytes on a disk that encode instructions to be run

* A process is an instance of a program being
executed by a (real or virtual) processor

— at any instant, there may be many processes running copies
of the same program (e.g., an editor); each process is
separate and (usually) independent

— Linux: ps —-auwx to list all processes

process A process B
code page code page
stack tables stack tables
PC PC
registers resources registers resources

States of a user process

interrupt

trap or
exgeption

interrupt

Process operations

« The OS provides the following kinds operations on
processes (i.e., the process abstraction interface):
— create a process
— delete a process
— suspend a process
— resume a process
— clone a process
— inter-process communication
— inter-process synchronization

2. Memory management

Primary memory is the directly accessed storage for the CPU

programs must be resident in memory to execute
memory access is fast
but memory doesn’t survive power failures

OS must:

allocate memory space for processes
deallocate space when needed by rest of system

maintain mappings from virtual memory to physical Mechanism
* page tables

decide how much memory to allocate to each process
decide when to remove a process from memory Policy

11

3. 1/0

A big chunk of the OS kernel deals with I/O
— hundreds of thousands of lines in Windows, Unix, etc.

The OS provides a standard interface between programs (user
or system) and devices

— file system (disk), sockets (network), frame buffer (video)

Device drivers are the routines that interact with specific device
types
— encapsulates device-specific knowledge

* e.g., how to initialize a device, how to request I/0O, how to handle
interrupts or errors

« examples: SCSI device drivers, Ethernet card drivers, video card
drivers, sound card drivers, ...

Device drivers are written by the device company
— but execute in the OS address space and run at high privilege

12

4. Secondary storage

Secondary storage (spinning disk, ssd, usb drives) is persistent
memory

— survives power failures (hopefully)

Routines that interact with disks are typically at a very low level
in the OS

— used by many components (file system, VM, ...)

— handle scheduling of disk operations, error handling, and often
management of space on disks

Usually independent of file system
— device => raw storage
— file system => layer of abstraction providing structured storage

13

5. File systems

Secondary storage devices are crude and awkward
— e.g., “write a 4096 byte block to sector 12"

File system: a more convenient abstraction
— hardware independent interface presented up to apps
— hardware dependent implementation looking down to hw

FS defines logical objects, like files and directories
— files represent values, stored somewhere on disk

— directories represent file meta-data, like name, owner, creation
time, ...

— user code operates on files/directories, not on disk blocks

FS defines operations on objects, like creat, read, write, stat

14

“File system”

* The term “file system” has at least three common
meanings

— The generic notion of providing a more convenient abtraction
layered on some storage device

— A particular software implementation of that generic idea, e.g.,
NTFS or FAT or ext4

— A self-contained, and so physically portable, bunch of bits on some
storage device

* File systems are mountable

15

File system operations

* The file system interface defines standard operations:
— file (or directory) creation and deletion

— manipulation of files and directories (read, write, extend,
rename, protect)

— copy
— lock

* File systems may also provide higher level services
— accounting and quotas
— backup (must be incremental and online!)
— (sometimes) indexing or search
— (sometimes) file versioning
— (sometimes) encryption

16

6. Protection

Protection is a general mechanism used throughout
the OS

— all resources needed to be protected
* memory
* processes
« files
 devices
« CPU time
* network bandwidth (?)

Protection mechanisms motivations:

— “I'm not perfect” -- help to detect and contain unintentional
errors

— “There are adversaries” -- preventing malicious abuses

17

/. Command Interpreter (shell)

A particular program that handles the interpretation of users’
commands and helps to manage processes

— user input may be from keyboard (command-line interface), from
script files, or from the mouse (GUIs)

— allows users to launch and control new programs

On some systems, command interpreter may be a standard part
of the OS (e.g., MS DOS, Apple I, JOS)

On others, it’s just non-privileged code that provides an interface
to the user

— e.g., bash/csh/tcsh/zsh on UNIX

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 18

8. Windowing System

« Abstracts the display, keyboard, and mouse

— Each window can be manipulated in a way that is independent of
the others

* Output:
— Writing to the window
— Resizing the window
— Possibly moving the window

* |Inputs:
- keyboard focus

- mouse clicks
- (x,y) position in window coordinates
- [also (x,y) position in screen coordinates...]

CSE 451 M3 19

9. Networking

 The Internet moves bits from one machine to another
machine

— An IP address basically names a machine
* e.g., 128.208.1.137 is attu1.cs.washington.edu

* When bytes are sent “to a machine,” who receives
them?

— The operating system

« But | want to ask the web server process on the
machine for a page, not talk with the OS!

— The OS “demultiplexes” incoming messages and delivers
them to processes

CSE 451 M3 20

Networking (continued)

* The IP layer of the network stack is in charge of
moving data from one machine to another

— In a way, it abstracts the network interface card (physical
connection to the network)

« The TCP layer runs on top of IP
— It provides process to process communication, not just
machine to machine
— It abstracts the faulty IP network into an (almost) error-free
network

— Should the TCP implementation be part of the OS, or should
it be a service that runs on top of the OS (kind of like a web
service)?

CSE 451 M3 21

Part |l: OS structure

 It's not always clear how to stitch OS modules
together:

[Command Interpreter]

[Information S% \

Error Handling Accounting Syste)

777\
//’rec’non Syst / /

Flle Sys em

Memory Secondarys rage
Pr'ocess Management Management Manage ent
i\/ a
I70 Sysfem

22

OS structure

An OS consists of all of these components, plus:
— many other components
— system programs (privileged and non-privileged)
* e.g., bootstrap code, the init program, ...

Major issue:
— how do we organize all this?
— what are all of the code modules, and where do they exist?
— how do they cooperate?

Massive software engineering and design problem
— design a large, complex program that:

« performs well, is reliable, is extensible, is backwards compatible, ...

23

Early structure: Monolithic

« Traditionally, OS’s (like UNIX) were built as a
monolithic entity:

usSer programs

0S everything

hardware

Monolithic design

* Major advantage:
— cost of module interactions is low (procedure call)

* Disadvantages:
— hard to understand
— hard to modify
— unreliable (no isolation between system modules)
— hard to maintain

« What is the alternative?

— find a way to organize the OS in order to simplify its design
and implementation

Layering

One traditional approach is layering
— implement OS as a set of layers
— each layer presents an enhanced ‘virtual machine’ to the layer above

The first description of this approach was Dijkstra’s THE system (1968)

— Layer 5: Job Managers

« Execute users’ programs
— Layer 4: Device Managers

« Handle devices and provide buffering
— Layer 3: Console Manager

* Implements virtual consoles
— Layer 2: Page Manager

* Implements virtual memories for each process
— Layer 1: Kernel

* Implements a virtual processor for each process
— Layer 0: Hardware

Each layer can be tested and verified independently
— Layering helped implementation and aided attempt at formal verification of correctness

26

Problems with layering

* |Imposes hierarchical structure

— but real systems are more complex:
« file system requires VM services (buffers)
« VM would like to use files for its backing store

— strict layering isn’t flexible enough

« Poor performance
— each layer crossing has overhead associated with it

* Disjunction between model and reality
— systems modeled as layers, but not really built that way

27

Hardware Abstraction Layer

Hardware AbstractionLayer
(device drivers, assembly routines)

* An example of layering in modern operating systems

« (Goal: separates hardware-specific routines from the
“core” OS

— Provides portability
— Improves readability

28

Alternative to Monolithic: Microkernels

Introduced in the late 80’s, early 90’s
Goal:

— minimize what goes into the kernel
— organize rest of OS as user-level processes

This results in:
— better reliability (isolation between components, less code
running at full privilege)
— ease of extension and customization
— poor performance (user/kernel boundary crossings)

First microkernel system was Hydra (CMU, 1970)

— Follow-ons: Mach (CMU), Chorus (French UNIX-like OS),
OS X (Apple)

29

user
processes

system
processes

microkernel

Microkernel structure illustrated

chrome powerpoint

apache photoshop c

itunes word o

1

3

[file system | [network] S
o

[paging | ®
communication 3 g

low-level VM processor o =
' ntrol = =
protection CO ® @

hardware

30

User <
mode

Kernel
mode

<

EXAMPLE: WINDOWS

Appllcatlon program

Photo-
shop

Windows—including scheduling, memory
management, process management, file system,
device drivers (I/0) and much, much more

From Andy Tanenbaum 31

ARCHITECTURE OF MINIX 3

| @ //

User

1N
clclclclcI®

\.

Microkernel handles interrupts,

processes, scheduling, IPC

Process

From Andy Tanenbaum 32

Virtual Machine Monitors

Type-1 VMM
(Hypervisor)

Windows Server
virtualization
(WSv)

Xen
VMWare ESX

« Transparently implement “hardware” in software

* Voila, you can boot a “guest OS”

33
From http://port25.technet.com/

Exokernel

Basic idea is for the kernel to present an abstraction

of the hardware to user level

— That abstraction doesn’t have to have the same API as the
actual hardware

User-level processes operate on hardware via the

abstraction/exokernel

The exokernel validates that the operations
requested are legal

The exokernel’s abstractions guarantee that user
level code can operate only on the portions of actual
physical resources they've been allocated

Result?

— Very cheap communication between user code and “OS

code” as most of the OS is running at user level
34

Summary and Next Module

 Summary

OS design has been a evolutionary process of trial and error.
Probably more error than success

Successful OS designs have run the spectrum from
monolithic, to layered, to micro kernels, to virtual machine
monitors

The role and design of an OS are still evolving
It is impossible to pick one “correct” way to structure an OS

35

	CSE 451: Operating Systems�Spring 2017��Module 3�Operating System�Components and Structure
	OS structure
	Slide Number 3
	Slide Number 4
	Part I: Major OS components
	1. Process management
	Processes vs. Threads
	Program / processor / process
	States of a user process
	Process operations
	2. Memory management
	3. I/O
	4. Secondary storage
	5. File systems
	“File system”
	File system operations
	6. Protection
	7. Command Interpreter (shell)
	8. Windowing System
	9. Networking
	Networking (continued)
	Part II: OS structure
	OS structure
	Early structure: Monolithic
	Monolithic design
	Layering
	Problems with layering
	Hardware Abstraction Layer
	Alternative to Monolithic: Microkernels
	Microkernel structure illustrated
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Exokernel
	Summary and Next Module

