
CSE 451: Operating Systems
Spring 2017

Module 3
Operating System

Components and Structure

John Zahorjan

1

OS structure

• The OS sits between application programs and the
hardware
– it mediates access and abstracts away ugliness
– programs request services via traps or exceptions
– devices request attention via interrupts

2

OS

P1
P2 P3

P4

D1
D2 D3

D4

trap or
exception interrupt

dispatch

start i/o

3

Hardware (CPU, devices)

Application Interface (API)

Hardware Abstraction Layer

File
Systems

Memory
Manager

Process
Manager

Network
Support

Device
Drivers

Interrupt
Handlers

Boot &
Init

JVMPhotoshopChrome

O
pe

ra
tin

g
Sy

st
em

Portable
U

se
r A

pp
s

Acrobat

4

Memory
Management

I/O System

Secondary Storage
Management

File System

Protection System

Accounting System

Process Management

Command Interpreter

Information Services

Error Handling

5

Part I: Major OS components

1. processes/threads
2. memory
3. I/O
4. secondary storage
5. file systems
6. protection
7. shells (command interpreter, or OS UI)
8. windowing system
9. networking

6

1. Process management

• An OS executes many kinds of activities:
– users’ programs
– background jobs or scripts
– system programs

• print managers, name servers, file servers, network daemons,
…

• Each of these activities is encapsulated in a process
– a process is a running program
– a process has an execution context

• PC, registers, VM maps, OS resources (e.g., open files), etc…
• plus the program itself (code and data)

– the OS’s process module manages these processes
• creation, destruction, scheduling, …

7

Processes vs. Threads

• Soon, we will separate the “thread of control” aspect
of a process (program counter, call stack) from its
other aspects (address space, open files, owner,
etc.). And we will allow each {process / address
space} to have multiple threads of control.

• But for now – for simplicity and for historical reasons
– consider each {process / address space} to have a
single thread of control.

8

Program / processor / process
• Note that a program is totally passive

– just bytes on a disk that encode instructions to be run

• A process is an instance of a program being
executed by a (real or virtual) processor
– at any instant, there may be many processes running copies

of the same program (e.g., an editor); each process is
separate and (usually) independent

– Linux: ps -auwx to list all processes
process A process B

code
stack
PC

registers

code
stack
PC

registers

page
tables

resources

page
tables

resources

9

States of a user process

running

ready

blocked

trap or
exception

interruptdispatch

interrupt

Process operations

• The OS provides the following kinds operations on
processes (i.e., the process abstraction interface):
– create a process (createprocess, fork/exec)
– delete a process (kill, exit)
– suspend a process (kill, sched_yield)
– resume a process (kill)
– clone a process (fork)
– inter-process communication (kill, pipe, mmap, …)
– inter-process synchronization (wait, flock, sem_open, ...)

10

11

2. Memory management
• Primary memory is the directly accessed storage for the CPU

– programs must be resident in memory to execute
– memory access is fast
– but memory doesn’t survive power failures

• OS must:
– allocate memory space for processes
– deallocate space when needed by rest of system
– maintain mappings from virtual memory to physical

• page tables

– decide how much memory to allocate to each process
– decide when to remove a process from memory

Mechanism

Policy

12

3. I/O
• A big chunk of the OS kernel deals with I/O

– hundreds of thousands of lines in Windows, Unix, etc.

• The OS provides a standard interface between programs (user
or system) and devices
– file system (disk), sockets (network), frame buffer (video)

• Device drivers are the routines that interact with specific device
types
– encapsulates device-specific knowledge

• e.g., how to initialize a device, how to request I/O, how to handle
interrupts or errors

• examples: SCSI device drivers, Ethernet card drivers, video card
drivers, sound card drivers, …

• Device drivers are written by the device company
– but execute in the OS address space and run at high privilege

13

4. Secondary storage

• Secondary storage (spinning disk, ssd, usb drives) is persistent
memory
– survives power failures (hopefully)

• Routines that interact with disks are typically at a very low level
in the OS
– used by many components (file system, VM, …)
– handle scheduling of disk operations, error handling, and often

management of space on disks

• Usually independent of file system
– device => raw storage
– file system => layer of abstraction providing structured storage

14

5. File systems

• Secondary storage devices are crude and awkward
– e.g., “write a 4096 byte block to sector 12”

• File system: a more convenient abstraction
– hardware independent interface presented up to apps
– hardware dependent implementation looking down to hw

• FS defines logical objects, like files and directories
– files represent values, stored somewhere on disk
– directories represent file meta-data, like name, owner, creation

time, …
– user code operates on files/directories, not on disk blocks

• FS defines operations on objects, like creat, read, write, stat

15

“File system”

• The term “file system” has at least three common
meanings

– The generic notion of providing a more convenient abtraction
layered on some storage device

– A particular software implementation of that generic idea, e.g.,
NTFS or FAT or ext4

– A self-contained, and so physically portable, bunch of bits on some
storage device

• File systems are mountable

16

File system operations

• The file system interface defines standard operations:
– file (or directory) creation and deletion
– manipulation of files and directories (read, write, extend,

rename, protect)
– copy
– lock

• File systems may also provide higher level services
– accounting and quotas
– backup (must be incremental and online!)
– (sometimes) indexing or search
– (sometimes) file versioning
– (sometimes) encryption

17

6. Protection
• Protection is a general mechanism used throughout

the OS
– all resources needed to be protected

• memory
• processes
• files
• devices
• CPU time
• network bandwidth (?)
• …

• Protection mechanisms motivations:
– “I’m not perfect” -- help to detect and contain unintentional

errors
– “There are adversaries” -- preventing malicious abuses

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 18

7. Command Interpreter (shell)

• A particular program that handles the interpretation of users’
commands and helps to manage processes
– user input may be from keyboard (command-line interface), from

script files, or from the mouse (GUIs)
– allows users to launch and control new programs

• On some systems, command interpreter may be a standard part
of the OS (e.g., MS DOS, Apple II, JOS)

• On others, it’s just non-privileged code that provides an interface
to the user
– e.g., bash/csh/tcsh/zsh on UNIX

8. Windowing System

• Abstracts the display, keyboard, and mouse
– Each window can be manipulated in a way that is independent of

the others

• Output:
– Writing to the window
– Resizing the window
– Possibly moving the window

• Inputs:
- keyboard focus
- mouse clicks

- (x,y) position in window coordinates
- [also (x,y) position in screen coordinates...]

CSE 451 M3 19

9. Networking
• The Internet moves bits from one machine to another

machine
– An IP address basically names a machine

• e.g., 128.208.1.137 is attu1.cs.washington.edu

• When bytes are sent “to a machine,” who receives
them?
– The operating system

• But I want to ask the web server process on the
machine for a page, not talk with the OS!
– The OS “demultiplexes” incoming messages and delivers

them to processes

CSE 451 M3 20

Networking (continued)

• The IP layer of the network stack is in charge of
moving data from one machine to another
– In a way, it abstracts the network interface card (physical

connection to the network)

• The TCP layer runs on top of IP
– It provides process to process communication, not just

machine to machine
– It abstracts the faulty IP network into an (almost) error-free

network
– Should the TCP implementation be part of the OS, or should

it be a service that runs on top of the OS (kind of like a web
service)?

CSE 451 M3 21

22

Part II: OS structure

• It’s not always clear how to stitch OS modules
together:

Memory
Management

I/O System

Secondary Storage
Management

File System

Protection System

Accounting System

Process Management

Command Interpreter

Information Services

Error Handling

23

OS structure

• An OS consists of all of these components, plus:
– many other components
– system programs (privileged and non-privileged)

• e.g., bootstrap code, the init program, …

• Major issue:
– how do we organize all this?
– what are all of the code modules, and where do they exist?
– how do they cooperate?

• Massive software engineering and design problem
– design a large, complex program that:

• performs well, is reliable, is extensible, is backwards compatible, …

24

Early structure: Monolithic

• Traditionally, OS’s (like UNIX) were built as a
monolithic entity:

everything

user programs

hardware

OS

25

Monolithic design

• Major advantage:
– cost of module interactions is low (procedure call)

• Disadvantages:
– hard to understand
– hard to modify
– unreliable (no isolation between system modules)
– hard to maintain

• What is the alternative?
– find a way to organize the OS in order to simplify its design

and implementation

26

Layering
• One traditional approach is layering

– implement OS as a set of layers
– each layer presents an enhanced ‘virtual machine’ to the layer above

• The first description of this approach was Dijkstra’s THE system (1968)
– Layer 5: Job Managers

• Execute users’ programs
– Layer 4: Device Managers

• Handle devices and provide buffering
– Layer 3: Console Manager

• Implements virtual consoles
– Layer 2: Page Manager

• Implements virtual memories for each process
– Layer 1: Kernel

• Implements a virtual processor for each process
– Layer 0: Hardware

• Each layer can be tested and verified independently
– Layering helped implementation and aided attempt at formal verification of correctness

27

Problems with layering

• Imposes hierarchical structure
– but real systems are more complex:

• file system requires VM services (buffers)
• VM would like to use files for its backing store

– strict layering isn’t flexible enough

• Poor performance
– each layer crossing has overhead associated with it

• Disjunction between model and reality
– systems modeled as layers, but not really built that way

28

Hardware Abstraction Layer

• An example of layering in modern operating systems
• Goal: separates hardware-specific routines from the

“core” OS
– Provides portability
– Improves readability

Core OS
(file system, scheduler, system calls)

Hardware AbstractionLayer
(device drivers, assembly routines)

29

Alternative to Monolithic: Microkernels

• Introduced in the late 80’s, early 90’s
• Goal:

– minimize what goes into the kernel
– organize rest of OS as user-level processes

• This results in:
– better reliability (isolation between components, less code

running at full privilege)
– ease of extension and customization
– poor performance (user/kernel boundary crossings)

• First microkernel system was Hydra (CMU, 1970)
– Follow-ons: Mach (CMU), Chorus (French UNIX-like OS),

OS X (Apple)

3030

Microkernel structure illustrated

hardware

microkernel

system
processes

user
processes

low-level VM
communication

protection
processor

control

file system

threads

network

scheduling
paging

chrome powerpoint

apache

user m
ode

Kernel
m

ode

photoshop
itunes word

From Andy Tanenbaum 31

32From Andy Tanenbaum

33

• Transparently implement “hardware” in software
• Voilà, you can boot a “guest OS”

From http://port25.technet.com/

Exokernel
• Basic idea is for the kernel to present an abstraction

of the hardware to user level
– That abstraction doesn’t have to have the same API as the

actual hardware
• User-level processes operate on hardware via the

abstraction/exokernel
• The exokernel validates that the operations

requested are legal
• The exokernel’s abstractions guarantee that user

level code can operate only on the portions of actual
physical resources they’ve been allocated

• Result?
– Very cheap communication between user code and “OS

code” as most of the OS is running at user level
34

Summary and Next Module

• Summary
– OS design has been a evolutionary process of trial and error.

Probably more error than success
– Successful OS designs have run the spectrum from

monolithic, to layered, to micro kernels, to virtual machine
monitors

– The role and design of an OS are still evolving
– It is impossible to pick one “correct” way to structure an OS

3535

	CSE 451: Operating Systems�Spring 2017��Module 3�Operating System�Components and Structure
	OS structure
	Slide Number 3
	Slide Number 4
	Part I: Major OS components
	1. Process management
	Processes vs. Threads
	Program / processor / process
	States of a user process
	Process operations
	2. Memory management
	3. I/O
	4. Secondary storage
	5. File systems
	“File system”
	File system operations
	6. Protection
	7. Command Interpreter (shell)
	8. Windowing System
	9. Networking
	Networking (continued)
	Part II: OS structure
	OS structure
	Early structure: Monolithic
	Monolithic design
	Layering
	Problems with layering
	Hardware Abstraction Layer
	Alternative to Monolithic: Microkernels
	Microkernel structure illustrated
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Exokernel
	Summary and Next Module

