CSE 451: Operating Systems
Autumn 2019

Module 2
Architectural Support for
Operating Systems

John Zahorjan

Low-level architecture affects the OS
dramatically

Hardware

Who’s making sure the app behaves?

Who should get to define what “behaves” means?

(Hardware provides mechanism and OS provides policy.)

Low-level architecture affects the OS
dramatically

The operating system supports sharing of hardware
and protection of hardware
— multiple applications can run concurrently, sharing resources
— a buggy or malicious application can’t violate other
applications or the system
Those are high level goals
— There are many mechanisms that can be used to achieve
them
The architecture determines which approaches are
viable (reasonably efficient, or even possible)
— includes instruction set (synchronization, 1/O, ...)
— also hardware components like MMU or DMA controllers

Architectural features affecting OS’s

« These hardware features were built primarily to
support OS's:

timer (clock) operation

synchronization instructions (e.g., atomic test-and-set)
memory protection

|/O control operations

interrupts and exceptions

protected modes of execution (kernel vs. user)
privileged instructions

system calls (and software interrupts)

virtualization architectures

Privileged instructions

* Only the OS should be able to:

— directly access |/O devices (disks, network cards)
* why?
— manipulate memory state management
« page table pointers, TLB loads, etc.
* why?
— manipulate special ‘mode bits’
* interrupt priority level
* why?
« But users can put any bit strings in memory they want
— so they can execute the same instructions that the OS does

« So how can this work?
— some instructions must be “restricted to the OS”
— known as privileged instructions

OS protection

« So how does the processor know whether to allow execution of
a privileged instruction?
— the architecture must support at least two “privilege levels™: kernel
and user

» x86 supports 4 privilege levels

— current level is given by status bits in a protected processor register
« user programs execute in user mode (3, in xk)
« OS executes in kernel (privileged) mode (0, in xk)

 The hardware assures that privileged instructions can be
executed only when the core is at kernel privilege

— what happens if code running in user mode attempts to execute a
privileged instruction?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 6

Crossing protection boundaries

* Q: So how does code running at user level (apps) do something
privileged?

— e.g., how can it write to a disk if it can’t execute the 1/O instructions
that are needed to do 1/0O?

* A: Ask code that can (the OS) to do it for you.

» User programs must cause execution of an OS
— OS defines a set of system calls

— App code leaves a bunch of arguments to the call somewhere the
OS can a find them

* e.g., on the stack or in registers

— One of the arguments is a name for which system call is being
requested

 usually a syscall number
— App somehow causes processor to elevate its privilege level to 0

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Elevating the CPU privilege level

« Syscall instruction
— Like a protected procedure call
— What's protected?
* The entry point

— What about the arguments?

* Are they valid?

— Would assuming they are potentially cause an execution error
while running the OS?

Dynamic View

7/
/7
4
'
4
e
4
e
e
7
7
%
‘0S

-
-
-
-

-
-
-
-

v

HW state user privileged user privileged Time

_/'_A/‘

CSE 451#29

syscall/sysret instructions

The syscall instruction atomically:
— Saves the current (user) PC
— Sets the execution mode to privileged

— Sets the PC to a handler address (that was established by the OS
during boot)

The sysret instruction atomically:
— Restores the previously saved user PC
— Sets the execution mode to unprivileged

10

“Protected procedure call”

Similar to local procedure call...
— Caller puts arguments in a place callee expects (registers or stack)

— Caller causes jump to OS by executing syscall instruction

« The OS determines what address to start executing at, not the
caller

* One of the passed args is a syscall number, indicating which OS
function to invoke

— Callee (OS) saves caller’s state (registers, other control state) so it
can use the CPU

— OS function code runs

« OS must verify caller’s arguments (e.g., pointers)
— OS (mostly) restores caller’s state
— OS returns by executing sysret instruction

« Automatically sets PC to return address and sets execution mode to
user

11

A kernel crossing illustrated

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

user mode

Save user PC
PC = trap handler address
Enter kernel mode

kernel mode ‘
trap handler

\

y

sys_read() kernel routine

y

PC =saved PC

Enter user mode
Save app state

Verify syscall number
Find sys_read() handler in vector table

Verify args

Initiate read
Choose next process to run
Setup return values

\

SYSRET instruction

y

Restore app state

12

System call issues

What would be wrong if a syscall worked like a
regular subroutine call, with the caller specifying the
next PC?

What would happen if kernel didn’t save state?
Why must the kernel verify arguments?

How can you reference kernel objects as arguments
to or results from system calls?

— What does that question mean?!

13

Exception Handling and Protection

« All entries to the OS occur via the mechanism just
shown

— Acquiring privileged mode and branching to the trap handler
are inseparable

* Terminology:

— Interrupt: asynchronous; caused by an external device

— Exception: synchronous; unexpected problem with
iInstruction

— Trap: synchronous; intended transition to OS due to an
Instruction
* Privileged instructions and resources are the basis
for most everything: memory protection, protected
/O, limiting user resource consumption, ...

14

x86 Interrupt/Trap Handling: Interrupt
vector

Vector Mne- Description Type Error Source
monic Code
0 #DE Divide Error Fault No DIV and IDIV instructions.
1 #0B Debug Exception Fault/ Trap No Instruction, data, and I/0 breakpoints;
single-step; and others.
2 - NMI Interrupt Interrupt No Nonmaskable external interrupt.
3 #BP Breakpoint Trap No INT 3 instruction.
4 #OF Overflow Trap No INTO instruction.
5 #BR BOUND Range Exceeded Fault No BOUND instruction.
6 #UD Invalid Opcode (Undefined Opcode) | Fault No UDZ2 instruction or reserved upcude.'
7 #NM Device Not Available (No Math Fault No Floating-point or WAIT/FWAIT instruction.
Coprocessor)
8 #OF Double Fault Abort Yes Any instruction that can generate an
(zero) exception, an NMI, or an INTR.
9 Coprocessor Segment Overrun Fault No Floating-point instruction.
(reserved)
10 #TS Invalid TSS Fault Yes Task switch or TS5 access.
11 #NP Segment Not Present Fault Yes Loading segment registers or accessing
system segments.
12 #55 Stack-Segment Fault Fault Yes Stack operations and 5SS register loads.
13 #GP General Protection Fault Yes Any memory reference and other
protection checks.
14 #PF Page Fault Fault Yes Any memory reference.

CSE 451 #2 15

x86 Interrupt/Trap Handling: Overview

Destination
10T Code Segment
Interrupt
Offset Procedure
Interrupt Interrupt or e
Vector Trap Gate
— -
Segment Selector
GDT or LDT
Base
Address
- Segment
. Descriptor

Fiaure 6-3. Interrupt Procedure Call

CSE 451 #2 16

x86 Interrupt/Trap Handling: Finding the

IDT

47

IDTR Register

16 15

0

IDT Base Address

| IDT Limit

l

Interrupt

Descriptor Table (IDT)

—h@h
S

.

Gate for
Interrupt #n

(n-1)+8

g

Gale for
Interrupt #3

16

Gate for
Interrupt #2

Gale for

Interrupt #1

0

£}

0

Figure 6-1. Relationship of the IDTR and IDT

CSE 451 #2 17

x86 Interrupt/Trap Handling: IDT entries

Interrupt Gate
b 16 15 14 1312 B 7T 5 4
D
Offset 31..16 PlPp|loD110|0 00
L
3 18 15
Segment Selector Offset 15.0
Trap Gate
k.| 16 15 14 1312 B T 5 4
D
Offset 31..16 PlPp|loD111|000
L
3 16 15
Segment Selector Offset 15..0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag

Selector Segment Selector for destination code segment

D
|:| Reserved

Size of gate: 1 = 32 bits; 0 = 16 bits

Figure 6-2. IDT Gate Descriptors

CSE 451 #2 18

x86 Interrupt/Trap Handling: Segment
Descriptors

N 2423 2221 2018 1615 14 1312 11 arT 0
D| |a| Seg D
Base 31:24 Gl/|L{v| Lmt |P| p |S| Type Base 23:16 4
B L| 1916 L
3 1615 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (lA-32e mode only)

AVL — Available for use by system software

BASE — Segment base address

D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level

G — Granularity

LIMIT — Segment Limit

P — Segment present

S — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type

Figure 3-8. Segment Descriptor

CSE 451 #2 19

x86 Interrupt/Trap Handling: Stacks

31 15 0
/O Map Base Address Reserved |T 100
Reserved LDT Segment Selector 96
Reserved GS 92
Reserved FS 88
Reserved Ds 84
Reserved ss 80
Reserved cs 76
Reserved ES 72
EDI 68
ESI 64
EBP 60
ESP 56
EBX 52
EDX 48
ECX 44
EAX 40
EFLAGS 36
EIP 32
CR3 (PDBR) 28
Reserved | ss2 24
ESP2 20
Reserved | 581 16
ESP1 12
Reserved | $S0 8
ESPO
Reserved | Previous Task Link
[_] Reserved bits. Set to 0.

Figure 7-2. 32-Bit Task-State Segment (TSS)
CSE 451 #2 20

Memory protection

« OS must protect user programs from each other

— malice, bugs

« OS must also protect itself from user programs
— integrity and security
— what about protecting user programs from OS?

« Simplest scheme: base and limit registers

— (Hey, segments!)

— are these protected?

Prog A

basereg

Prog B

Hnﬂtreg

Prog C

base and limit registers

are loaded by OS before

starting program

21

More sophisticated memory protection

« coming later in the course
— also coming earlier in your course sequence!

* paging, segmentation, virtual memory
— page tables, page table pointers
— translation lookaside buffers (TLBs)
— page fault handling

22

/O control

Issues:

— how does the OS start an [/O?
» special I/O instructions
* memory-mapped I/O

— how does the OS notice an I/O has finished?
 polling
 Interrupts

— how does the OS exchange data with an I/O device?
* Programmed I/O (PIO)
* Direct Memory Access (DMA)

23

Asynchronous I/O

 Interrupts are the basis for asynchronous 1/O

device performs an operation asynchronously to CPU
device sends an interrupt signal on bus when done

iIn memory, a vector table contains list of addresses of kernel
routines to handle various interrupt types

» who populates the vector table, and when?

CPU switches to address indicated by vector index specified
by interrupt signal

« What's the advantage of asynchronous |/O?

24

Imers

How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
— use a hardware timer that generates a periodic interrupt

— before it transfers to a user program, the OS loads the timer
with a time to interrupt
« “quantum” — how big should it be set?

— when timer fires, an interrupt transfers control back to OS
« at which point OS must decide which program to schedule next
 very interesting policy question: we’'ll dedicate a class to it
Should access to the timer be privileged?

— for reading or for writing?

25

Synchronization

* Interrupts cause a wrinkle:

may occur any time, causing code to execute that interferes
with code that was interrupted

OS must be able to synchronize concurrent processes

« Synchronization:

guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically

one method: turn off interrupts before the sequence, execute
it, then re-enable interrupts

« architecture must support disabling interrupts

— Privileged???

another method: have special complex atomic instructions

» read-modify-write

+ test-and-set

* load-linked store-conditional

26

“Concurrent programming”

« Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”

— modern “event-oriented” application programming is a
middle ground

— And in a multi-core world, more and more apps have internal
concurrency

 Arises from the architecture
— Can be sugar-coated, but cannot be totally abstracted away

* Huge intellectual challenge

— Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 27

Architectures are still evolving

New features are still being introduced to meet modern
demands

— Support for virtual machine monitors

— Hardware transaction support (to simplify parallel programming)
— Support for security (encryption, trusted modes)

— Increasingly sophisticated video / graphics

— Other stuff that hasn’t been invented yet...

In current technology transistors are free — CPU makers are
looking for new ways to use transistors to make their chips more
desirable

Intel’s big challenge: finding applications that require new
hardware support, so that you will want to upgrade to a new
computer to run them

28

Some questions

« Why wouldn’t you want a user program to be able to
access an |/O device (e.g., the disk) directly?
— Why would you?!

* OK, so what keeps this from happening? What

prevents user programs from directly accessing the
disk?

 How then does a user program cause disk /O to
occur?

29

Some questions

What prevents a user program from scribbling on the
memory of another user program??
— Why might you want to allow it to?!

What prevents a user program from scribbling on the
memory of the operating system?

What prevents a user program from over-writing its
own instructions?

— Why do you want to prevent that?

— Why do you want to allow it?!

What prevents a user program from running away
with the CPU?

30

	CSE 451: Operating Systems�Autumn 2019��Module 2�Architectural Support for�Operating Systems
	Low-level architecture affects the OS dramatically
	Low-level architecture affects the OS dramatically
	Architectural features affecting OS’s
	Privileged instructions
	OS protection
	Crossing protection boundaries
	Elevating the CPU privilege level
	Dynamic View
	syscall/sysret instructions
	“Protected procedure call”
	A kernel crossing illustrated
	System call issues
	Exception Handling and Protection
	x86 Interrupt/Trap Handling: Interrupt vector
	x86 Interrupt/Trap Handling: Overview
	x86 Interrupt/Trap Handling: Finding the IDT
	x86 Interrupt/Trap Handling: IDT entries
	x86 Interrupt/Trap Handling: Segment Descriptors
	x86 Interrupt/Trap Handling: Stacks
	Memory protection
	More sophisticated memory protection
	I/O control
	Asynchronous I/O
	Timers
	Synchronization
	“Concurrent programming”
	Architectures are still evolving
	Some questions
	Some questions

