
CSE 451: Operating Systems
Autumn 2019

Module 2
Architectural Support for

Operating Systems

John Zahorjan

1

2

Low-level architecture affects the OS
dramatically

App

Hardware

Who’s making sure the app behaves?

Who should get to define what “behaves” means?

(Hardware provides mechanism and OS provides policy.)

3

Low-level architecture affects the OS
dramatically

• The operating system supports sharing of hardware
and protection of hardware
– multiple applications can run concurrently, sharing resources
– a buggy or malicious application can’t violate other

applications or the system
• Those are high level goals

– There are many mechanisms that can be used to achieve
them

• The architecture determines which approaches are
viable (reasonably efficient, or even possible)
– includes instruction set (synchronization, I/O, …)
– also hardware components like MMU or DMA controllers

4

Architectural features affecting OS’s

• These hardware features were built primarily to
support OS’s:
– timer (clock) operation
– synchronization instructions (e.g., atomic test-and-set)
– memory protection
– I/O control operations
– interrupts and exceptions
– protected modes of execution (kernel vs. user)
– privileged instructions
– system calls (and software interrupts)
– virtualization architectures

5

Privileged instructions
• Only the OS should be able to:

– directly access I/O devices (disks, network cards)
• why?

– manipulate memory state management
• page table pointers, TLB loads, etc.
• why?

– manipulate special ‘mode bits’
• interrupt priority level
• why?

• But users can put any bit strings in memory they want
– so they can execute the same instructions that the OS does

• So how can this work?
– some instructions must be “restricted to the OS”
– known as privileged instructions

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 6

OS protection

• So how does the processor know whether to allow execution of
a privileged instruction?
– the architecture must support at least two “privilege levels”: kernel

and user
• x86 supports 4 privilege levels

– current level is given by status bits in a protected processor register
• user programs execute in user mode (3, in xk)
• OS executes in kernel (privileged) mode (0, in xk)

• The hardware assures that privileged instructions can be
executed only when the core is at kernel privilege
– what happens if code running in user mode attempts to execute a

privileged instruction?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 7

Crossing protection boundaries
• Q: So how does code running at user level (apps) do something

privileged?
– e.g., how can it write to a disk if it can’t execute the I/O instructions

that are needed to do I/O?
• A: Ask code that can (the OS) to do it for you.

• User programs must cause execution of an OS
– OS defines a set of system calls
– App code leaves a bunch of arguments to the call somewhere the

OS can a find them
• e.g., on the stack or in registers

– One of the arguments is a name for which system call is being
requested

• usually a syscall number
– App somehow causes processor to elevate its privilege level to 0

8

Elevating the CPU privilege level

• Syscall instruction
– Like a protected procedure call
– What’s protected?

• The entry point
– What about the arguments?

• Are they valid?
– Would assuming they are potentially cause an execution error

while running the OS?

Dynamic View

CSE 451 #2 9

Time

user

code

HW state user

OS

user

code OS

privileged privilegeduser

syscall/sysret instructions

• The syscall instruction atomically:
– Saves the current (user) PC
– Sets the execution mode to privileged
– Sets the PC to a handler address (that was established by the OS

during boot)

• The sysret instruction atomically:
– Restores the previously saved user PC
– Sets the execution mode to unprivileged

10

“Protected procedure call”

• Similar to local procedure call…
– Caller puts arguments in a place callee expects (registers or stack)
– Caller causes jump to OS by executing syscall instruction

• The OS determines what address to start executing at, not the
caller

• One of the passed args is a syscall number, indicating which OS
function to invoke

– Callee (OS) saves caller’s state (registers, other control state) so it
can use the CPU

– OS function code runs
• OS must verify caller’s arguments (e.g., pointers)

– OS (mostly) restores caller’s state
– OS returns by executing sysret instruction

• Automatically sets PC to return address and sets execution mode to
user

11

12

A kernel crossing illustrated

user mode
kernel mode

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

Save user PC
PC = trap handler address
Enter kernel mode

Save app state
Verify syscall number
Find sys_read() handler in vector table

trap handler

sys_read() kernel routine
Verify args
Initiate read
Choose next process to run
Setup return values
Restore app state

SYSRET instruction

PC = saved PC
Enter user mode

13

System call issues

• What would be wrong if a syscall worked like a
regular subroutine call, with the caller specifying the
next PC?

• What would happen if kernel didn’t save state?

• Why must the kernel verify arguments?

• How can you reference kernel objects as arguments
to or results from system calls?
– What does that question mean?!

14

Exception Handling and Protection

• All entries to the OS occur via the mechanism just
shown
– Acquiring privileged mode and branching to the trap handler

are inseparable
• Terminology:

– Interrupt: asynchronous; caused by an external device
– Exception: synchronous; unexpected problem with

instruction
– Trap: synchronous; intended transition to OS due to an

instruction
• Privileged instructions and resources are the basis

for most everything: memory protection, protected
I/O, limiting user resource consumption, …

x86 Interrupt/Trap Handling: Interrupt
vector

CSE 451 #2 15

x86 Interrupt/Trap Handling: Overview

CSE 451 #2 16

x86 Interrupt/Trap Handling: Finding the
IDT

CSE 451 #2 17

x86 Interrupt/Trap Handling: IDT entries

CSE 451 #2 18

x86 Interrupt/Trap Handling: Segment
Descriptors

CSE 451 #2 19

x86 Interrupt/Trap Handling: Stacks

CSE 451 #2 20

21

Memory protection
• OS must protect user programs from each other

– malice, bugs
• OS must also protect itself from user programs

– integrity and security
– what about protecting user programs from OS?

• Simplest scheme: base and limit registers
– (Hey, segments!)
– are these protected?

Prog A

Prog B

Prog C

base reg
limit reg

base and limit registers
are loaded by OS before

starting program

22

More sophisticated memory protection

• coming later in the course
– also coming earlier in your course sequence!

• paging, segmentation, virtual memory
– page tables, page table pointers
– translation lookaside buffers (TLBs)
– page fault handling

23

I/O control

• Issues:
– how does the OS start an I/O?

• special I/O instructions
• memory-mapped I/O

– how does the OS notice an I/O has finished?
• polling
• Interrupts

– how does the OS exchange data with an I/O device?
• Programmed I/O (PIO)
• Direct Memory Access (DMA)

24

Asynchronous I/O

• Interrupts are the basis for asynchronous I/O
– device performs an operation asynchronously to CPU
– device sends an interrupt signal on bus when done
– in memory, a vector table contains list of addresses of kernel

routines to handle various interrupt types
• who populates the vector table, and when?

– CPU switches to address indicated by vector index specified
by interrupt signal

• What’s the advantage of asynchronous I/O?

25

Timers

• How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
– use a hardware timer that generates a periodic interrupt
– before it transfers to a user program, the OS loads the timer

with a time to interrupt
• “quantum” – how big should it be set?

– when timer fires, an interrupt transfers control back to OS
• at which point OS must decide which program to schedule next
• very interesting policy question: we’ll dedicate a class to it

• Should access to the timer be privileged?
– for reading or for writing?

26

Synchronization

• Interrupts cause a wrinkle:
– may occur any time, causing code to execute that interferes

with code that was interrupted
– OS must be able to synchronize concurrent processes

• Synchronization:
– guarantee that short instruction sequences (e.g., read-

modify-write) execute atomically
– one method: turn off interrupts before the sequence, execute

it, then re-enable interrupts
• architecture must support disabling interrupts

– Privileged???
– another method: have special complex atomic instructions

• read-modify-write
• test-and-set
• load-linked store-conditional

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 27

“Concurrent programming”

• Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”
– modern “event-oriented” application programming is a

middle ground
– And in a multi-core world, more and more apps have internal

concurrency
• Arises from the architecture

– Can be sugar-coated, but cannot be totally abstracted away
• Huge intellectual challenge

– Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming

Architectures are still evolving
• New features are still being introduced to meet modern

demands
– Support for virtual machine monitors
– Hardware transaction support (to simplify parallel programming)
– Support for security (encryption, trusted modes)
– Increasingly sophisticated video / graphics
– Other stuff that hasn’t been invented yet…

• In current technology transistors are free – CPU makers are
looking for new ways to use transistors to make their chips more
desirable

• Intel’s big challenge: finding applications that require new
hardware support, so that you will want to upgrade to a new
computer to run them

2828

29

Some questions

• Why wouldn’t you want a user program to be able to
access an I/O device (e.g., the disk) directly?
– Why would you?!

• OK, so what keeps this from happening? What
prevents user programs from directly accessing the
disk?

• How then does a user program cause disk I/O to
occur?

30

Some questions
• What prevents a user program from scribbling on the

memory of another user program?
– Why might you want to allow it to?!

• What prevents a user program from scribbling on the
memory of the operating system?

• What prevents a user program from over-writing its
own instructions?
– Why do you want to prevent that?
– Why do you want to allow it?!

• What prevents a user program from running away
with the CPU?

	CSE 451: Operating Systems�Autumn 2019��Module 2�Architectural Support for�Operating Systems
	Low-level architecture affects the OS dramatically
	Low-level architecture affects the OS dramatically
	Architectural features affecting OS’s
	Privileged instructions
	OS protection
	Crossing protection boundaries
	Elevating the CPU privilege level
	Dynamic View
	syscall/sysret instructions
	“Protected procedure call”
	A kernel crossing illustrated
	System call issues
	Exception Handling and Protection
	x86 Interrupt/Trap Handling: Interrupt vector
	x86 Interrupt/Trap Handling: Overview
	x86 Interrupt/Trap Handling: Finding the IDT
	x86 Interrupt/Trap Handling: IDT entries
	x86 Interrupt/Trap Handling: Segment Descriptors
	x86 Interrupt/Trap Handling: Stacks
	Memory protection
	More sophisticated memory protection
	I/O control
	Asynchronous I/O
	Timers
	Synchronization
	“Concurrent programming”
	Architectures are still evolving
	Some questions
	Some questions

