
Section 6: Lab 3 Details
CSE 451 18WI



vregion

pages

vspace Visual Diagram

pgtbl

infos[0]

infos[1]

infos[2]

next

infos
[VPIPPAGE -1]

infos[0]

infos[1]

infos[2]

next

vregion

pages

vregion

pages

Machine dependent 
page table in 

RAM/TLB

struct proc

struct 
vspace

used

ppn

present

writeable

struct vpage_info

[1 page] [1 page]

struct vpi_page

... ...



vregions vs Page Tables

● Both have virtual to physical address mappings.
● vspace.pgtbl

○ Used by hardware to translate virtual addresses to physical addresses
○ CR3 register holds the top level page table (i.e. vspace.pgtbl)
○ TLB caches virtual -> physical mappings

● vspace.regions
○ Portable architecture independent software representation of the address space
○ Used by kernel to track/update mappings without affecting hardware page table lookups
○ May be incomplete at times (e.g. mappings in exec())

● How do we update the page table to reflect the vspace regions?



vspaceinvalidate(vs)

● “Transforms a vspace into the architecture dependent page table”
○ I.e. virtual mappings in vs.regions are reflected in vs.pgtbl
○ Git analogy: commit vspace changes to the page table

● Call when you’ve changed a mapping in vs.

Pop Quiz: When will you be calling vspaceinvalidate in Lab 3?



vspaceinstall(p)

● “Installs the page table into the page table register”
○ I.e. CR3 = vs.pgtbl
○ In x86, this flushes the TLB!
○ Git analogy: pushes your committed changes to the TLB/CR3

● If there were changes in the vspace, call after invalidating.

Pop Quiz: When will you be calling vspaceinstall in Lab 3? Can you ever get 
away without calling vspaceinstall?

https://wiki.osdev.org/TLB


Handling Page Faults in x86_64

● CR2 register holds the faulting linear address (since virtual paging is 
turned on, this is the virtual address)

○ How do you read or load a control register?

● tf->err holds the exception error code
○ You can use to determine the type of fault

Great resource: https://wiki.osdev.org/Page_fault

https://wiki.osdev.org/Page_fault


Copy-on-write Fork FAQ

● How do we keep track of physical pages and refcounts?
○ Coremap!

● What vspace functions need to behave differently to support COW fork, 
and how?

○ vspacecopy()

● Synchronization in modifying the vspace in page fault in COW fork?
○ not needed -- current process has exclusive access to its vspace
○ The ref count however could be concurrently modified


