
Section 5: Intro to Lab 3
CSE 451 18WI

Announcements

● racetest and pkilltest will be run as part of lab 3 grading
● user - New GDB command for stepping through user programs in GDB

○ E.g., user ls will let you step through ls.c in GDB when exec-ed!

● Multirun test script on Discussion Board
○ Use it! It should help find any concurrency issues

● +1 late days. Total: 5.
● Please fix read() to return 0 (EOF) when a pipe’s write end is closed and

there are no bytes left.

Part 1: Create a User-Level Heap

● User level programs call malloc and free to manage heap memory
○ Free list keeps track of free blocks in heap
○ malloc - Returns a free block of memory in the heap
○ free- Frees a block of memory in the heap
○ calloc- Like malloc, but zeros out memory first
○ We have provided malloc and free for you in user/umalloc.c

■ Or you can copy your implementation from 351 (just kidding, please don’t)

● But what happens when there is no space left in the heap for malloc to
return???

sbrk (set program break)

Hey Kernel, give me more heap space!

sbrk(n)

● Increments the Heap by n bytes, resetting the program break
○ Program break determines the max space that can be allocated to the data segment,

where the heap lies

● Returns -1 if there is not enough space
● Otherwise, returns the previous heap limit (i.e. the old top of the heap)

sbrk(n) Visual Diagram

Code

Stack

Code

Heap

Stack

Code

Heap

Stack

(Empty Heap)
brk

brk

brk

sbrk(m) sbrk(-n)*

2GB

* Note that you don’t need to support negative increments for Lab 3!

shell
All I do is fork fork fork no matter what!

Part 2: Starting Shell

● You’ll be adding init (user/init.c) process that forks off a shell
● Shell will spawn other programs
● Try piping in the shell

○ E.g. ls | wc

Stack On Demand
(dynamic stack growth)

User: sub $0x30, %rsp
Kernel: Stack Attack Alert! Stack Attack Alert!

Part 3: On-Demand Stack Growth

● exec() fixed the stack size but we want to support stack growth
● What exception occurs when a user reads/writes to an unallocated part of

the stack?
● What limits are there?

COW Fork
(copy-on-write)

Stop! Wait a minute! I might not even write
there!

Part 4: Copy-on-write Fork

● What are some inefficiencies with our lab 2 fork implementation?

Discuss amongst yourselves.

Hint: Look at the comment for vspacecopy.

Part 4: Copy-on-write Fork

In lab2’s fork, the mapped pages for the same data are disjoint! As a
consequence:

● Child and Parent use multiple physical pages for the same unchanging
code!

● If child does exec(), we throw away the vspace copy created in fork()!

How might we address these issues? What are some cases we’ll have to
design for?

Lab 2 Fork Visual Diagram before fork()

VPage D

VPage A

VPage B

VPage C

Vspace A Physical

Read/Write
Virtual Page

Read Only
Virtual Page

Physical
Page

PPage 1

PPage 3

PPage 2

PPage 4

PPage 5

PPage 6

PPage 7

PPage 8

VPage D

VPage A

VPage B

VPage C

VPage D

VPage A

VPage B

VPage C

PPage 1

PPage 3
(Copy of 4)

Vspace A Physical Vspace B

PPage 2
(Copy of 1)

PPage 4

PPage 5
(Copy of 6)

PPage 6

PPage 7

PPage 8
(Copy of 7)

Lab 2 Fork Visual Diagram after fork()

COW Fork Visual Diagram before a copy-on-write fork()

VPage D

VPage A

VPage B

VPage C

PPage 4

PPage 1

PPage 2

PPage 3

Vspace A Physical

Read/Write
Virtual Page

Read Only
Virtual Page

Physical
Page

COW Fork Visual Diagram after a copy-on-write fork()

VPage D

VPage A

VPage B

VPage C

VPage D

VPage A

VPage B

VPage C

PPage 4

PPage 1

PPage 2

PPage 3

Vspace A Physical Vspace B

COW Fork Visual Diagram once Process A writes to VPage A

VPage D

VPage A

VPage B

VPage C

VPage D

VPage A*

VPage B

VPage C

PPage 4

PPage 1

PPage 2

PPage 3

Vspace A Physical Vspace B

PPage 5

* Note: If Vspace B is the last reference, it makes sense to make its mapping writeable too, but you might not want to do that if there are multiple
read-only mappings from other vspaces.

Part 4: Copy-on-write Fork

● Food For Thought
○ How to distinguish a copy-on-write page from a normal read-only page?
○ What happens when parent and child try to concurrently write to the same page?
○ Could the same physical page be mapped in more than two address spaces?
○ How to resolve the case when one process writes to a COW page?

Design Doc Feedback

● How did your implementation differ from your design?
● Thoughts and feedback?

