Section 5: Introto Lab 3

CSE 451 18WI

Announcements

e racetest and pkilltest will be run as part of lab 3 grading

e user - New GDB command for stepping through user programs in GDB
o E.g.,user 1ls willletyou step through 1s.c in GDB when exec-ed!

e Multirun test script on Discussion Board
o Useit! It should help find any concurrency issues

e +1 late days. Total: 5.
e Please fix read() to return 0 (EOF) when a pipe’s write end is closed and
there are no bytes left.

Part 1: Create a User-Level Heap

e User level programs call mnalloc and free to manage heap memory
o Free list keeps track of free blocks in heap
malloc - Returns a free block of memory in the heap
free- Frees a block of memory in the heap
calloc- Like malloc, but zeros out memory first
We have provided malloc and free for you in user/umalloc.c
m Oryou can copy your implementation from 351 (just kidding, please don't)

e But what happens when there is no space left in the heap for malloc to
return???

o O O O

s b rk (set program break)

Hey Kernel, give me more heap space!

sbrk(n)

e Increments the Heap by n bytes, resetting the program break
o Program break determines the max space that can be allocated to the data segment,
where the heap lies

e Returns -1 if there is not enough space
e Otherwise, returns the previous heap limit (i.e. the old top of the heap)

sbrk(n) Visual Diagram

2GB

sbrk(m) sbrk(-n)*
—_— —

brk

(Empty| Heap)

brk

F
|

* Note that you don’t need to support negative increments for Lab 3!

shell

All I do is fork fork fork no matter what!

Part 2: Starting Shell

e You'll be adding init (user/init.c) process that forks off a shell
e Shell will spawn other programs

e Try piping in the shell
o Eg. 1s | wc

Stack On Demand

(dynamic stack growth)

User: sub $0x30, %rsp
Kernel: Stack Attack Alert! Stack Attack Alert!

Part 3: On-Demand Stack Growth

e exec() fixed the stack size but we want to support stack growth
e What exception occurs when a user reads/writes to an unallocated part of

the stack?
e What limits are there?

COW Fork

(copy-on-write)

Stop! Wait a minute! | might not even write
there!

Part 4. Copy-on-write Fork

e What are some inefficiencies with our lab 2 fork implementation?

Discuss amongst yourselves.

Hint: Look at the comment for vspacecopy.

Part 4. Copy-on-write Fork

In lab2's fork, the mapped pages for the same data are disjoint! As a
consequence:

e Child and Parent use multiple physical pages for the same unchanging

code!
e If child does exec (), we throw away the vspace copy created in fork()!

How might we address these issues? What are some cases we'll have to
design for?

Lab 2 Fork Visual Diagram before fork()

Vspace A

Physical

Read/Write
Virtual Page

Read Only
Virtual Page

Physical
Page

Lab 2 Fork Visual Diagram after fork()

Vspace A Physical Vspace B

COW Fork Visual Diagram before a copy-on-write fork()

Vspace A Physical

Read/Write
Virtual Page

Read Only
Virtual Page

Physical
Page

COW Fork Visual Diagram after a copy-on-write fork()

Vspace A Physical Vspace B

COW Fork Visual Diagram once Process A writes to VPage A

Vspace A Physical Vspace B

* Note: If Vspace B is the last reference, it makes sense to make its mapping writeable too, but you might not want to do that if there are multiple
read-only mappings from other vspaces.

Part 4. Copy-on-write Fork

e Food For Thought

o How to distinguish a copy-on-write page from a normal read-only page?

What happens when parent and child try to concurrently write to the same page?
Could the same physical page be mapped in more than two address spaces?
How to resolve the case when one process writes to a COW page?

o O O

Design Doc Feedback

e How did your implementation differ from your design?
e Thoughts and feedback?

