The Kernel Abstraction

Debugging as Engineering

* Much of your time in this course will be spent
debugging
— In industry, 50% of software dev is debugging
— Even more for kernel development
* How do you reduce time spent debugging?
— Produce working code with smallest effort

e Optimize a process involving you, code,
computer

Debugging as Science

* Understanding -> design -> code
— not the opposite

* Form a hypothesis that explains the bug
— Which tests work, which don’t. Why?
— Add tests to narrow possible outcomes

e Use best practices
— Always walk through your code line by line
— Module tests — narrow scope of where problem is

— Develop code in stages, with dummy replacements for
later functionality

ABET

You can’t debug effectively without this:

b. Ability to design and conduct experiments,
analyze and interpret data.

0% kemeal

Booting

Bootlioadar.......|.......i

Login app -

o = -

(1)
BIGS comies
b} arder

(2)
Bresmallaader
Gapeas (15 kersal

(3]
05 kemel (ogies
apn applcabim

Physical
Mamary

Fage:

Bosmallzader
nalmdime
ad dpla

0% keresd
nybychiong
and da'ta

Lagin app
instructons
and daka

Device Interrupts

* OS kernel needs to communicate with physical
devices

* Devices operate asynchronously from the CPU
— Polling: Kernel waits until I/O is done
— Interrupts: Kernel can do other work in the meantime

e Device access to memory
— Programmed I/O: CPU reads and writes to device
— Direct memory access (DMA) by device

— Buffer descriptor: sequence of DMA’s
* E.g., packet header and packet body

— Queue of buffer descriptors
* Buffer descriptor itself is DMA’ed

Device Interrupts

* How do device interrupts work?
— Where does the CPU run after an interrupt?
— What is the interrupt handler written in? C? Java?

— What stack does it use?

— |s the work the CPU had been doing before the
interrupt lost forever?

— If not, how does the CPU know how to resume
that work?

Challenge: Protection

* How do we execute code with restricted
privileges?
— Either because the code is buggy or if it might be
malicious

* Some examples:
— A script running in a web browser
— A program you just downloaded off the Internet

— A program you just wrote that you haven’t tested
yet

ﬂ Edits

Caursn
b

A Problem

Compller

Exariiabile g F rali.!:ng
kmage: 5'51EIT'| Py
Instructions
ard Oata

Fhysical

Memaory

Machine
Instructicns

0211
Hezap

slack

Machine
nalructions

[iata

Huap

Slack

Process

Ciperating
System
Kernel

Main Points

* Process concept

— A process is the OS abstraction for executing a
program with limited privileges

* Dual-mode operation: user vs. kernel

— Kernel-mode: execute with complete privileges
— User-mode: execute with fewer privileges

e Safe control transfer
— How do we switch from one mode to the other?

Process Abstraction

* Process: an instance of a program, running
with limited rights

— Thread: a sequence of instructions within a
process
» Potentially many threads per process (for now 1:1)

— Address space: set of rights of a process
 Memory that the process can access

e Other permissions the process has (e.g., which system
calls it can make, what files it can access)

Thought Experiment

* How can we implement execution with limited
privilege?
— Execute each program instruction in a simulator
— If the instruction is permitted, do the instruction
— Otherwise, stop the process
— Basic model in Javascript and other interpreted

languages

* How do we go faster?

— Run the unprivileged code directly on the CPU!

Hardware Support:
Dual-Mode Operation

* Kernel mode
— Execution with the full privileges of the hardware

— Read/write to any memory, access any |/O device,
read/write any disk sector, send/read any packet

e User mode
— Limited privileges

— Only those granted by the operating system
kernel

* On the x86, mode stored in EFLAGS register
* On the MIPS, mode in the status register

A Model of a CPU

Branch Address

Mew FC

. hl'l.’. |:||: u

Fragram

cowmler | S —

opcode

cPU

. Irestruclians

Feizh ard
ExeEcirle

A CPU with Dual-Mode Operation

Branch Address

Frogram Irestructians

e ———
Gl [g g . g
Handler PC o| FelectPC " Conler *|' Fetch ara
o] ExECiile

cPU

| ode R

opcade

Hardware Support:
Dual-Mode Operation

* Privileged instructions
— Available to kernel
— Not available to user code

* Limits on memory accesses

— To prevent user code from overwriting the kernel
* Timer

— To regain control from a user program in a loop

e Safe way to switch from user mode to kernel
mode, and vice versa

Privileged instructions

* Examples?

* What should happen if a user program
attempts to execute a privileged instruction?

Question

* For a “Hello world” program, the kernel must
copy the string from the user program
memory into the screen memory.

* Why not allow the application to write directly
to the screen’s buffer memory?

Simple Memory Protection

Physical
Memaory

Hage

Phrpsszal

Morea:
r'rl:'l.l'!!E.l_ll ammam ..:.. T

Base +
ST - | F— Baren

[]
-

S _, Rass

Escizphon

Towards Virtual Addresses

* Problems with base and bounds?

Virtual Addresses

* Translation Virtual Addresses Physical
. [Process Layout) Mamory
done in
hardware, God
using a table Data cods
* Table set up by Heap Hata
operating : Heap
system kernel : Siack
Stack

Example

int staticVar=0; // a static variable
main() {
staticVar +=1;
sleep(10); // sleep for x seconds
printf ("static address: %x, value: %d\n", &staticVar,
staticVar);

}

What happens if we run two instances of this program at
the same time?

What if we took the address of a procedure local variable
in two copies of the same program running at the
same time?

Question

* With an object-oriented language and
compiler, only an object’s methods can access
the internal data inside an object. If the
operating system only ran programs written in
that language, would it still need hardware
memory address protection?

 What if the contents of every object were
encrypted except when its method was
running, including the OS?

Hardware Timer

 Hardware device that periodically interrupts
the processor

— Returns control to the kernel handler

— Interrupt frequency set by the kernel
* Not by user code!

— Interrupts can be temporarily deferred
* Not by user code!

* Interrupt deferral crucial for implementing mutual
exclusion

Mode Switch

* From user mode to kernel mode

— Interrupts
* Triggered by timer and 1/O devices

— Exceptions
* Triggered by unexpected program behavior
* Or malicious behavior!
— System calls (aka protected procedure call)

* Request by program for kernel to do some operation
on its behalf

* Only limited # of very carefully coded entry points

Question

* Examples of exceptions

* Examples of system calls

Mode Switch

* From kernel mode to user mode

— New process/new thread start
 Jump to first instruction in program/thread

— Return from interrupt, exception, system call
* Resume suspended execution

— Process/thread context switch
e Resume some other process

— User-level upcall (UNIX signal)
* Asynchronous notification to user program

How do we take interrupts safely?

* Interrupt vector
— Limited number of entry points into kernel

e Atomic transfer of control

— Single instruction to change:
* Program counter
* Stack pointer
* Memory protection
e Kernel/user mode

* Transparent restartable execution
— User program does not know interrupt occurred

Interrupt Vector

Table set up by OS kernel; pointers to code to
run on different events

Processor Intermpt
Regestar Wactor

E |'..HII.'||I:ITIIIIErlI"_-l_-'rlll:Ill:_l i

]

F handleDivideBEyZaroi) {

1

FhandisSyateamCalif} 4

J

Interrupt Stack

* Per-processor, located in kernel (not user)
memory

— Usually a process/thread has both: kernel and
user stack

* Why can’t the interrupt handler run on the
stack of the interrupted user process?

Interrupt Stack

Fainnieg Realy to Reni Warnng far LG
LA |
i o
I.IEEF Etﬂﬂh Pric 2 Frac? Fracd
Frozi Fraci Fraci
Main Bain Bain
-
L' Orssr
Tog Hall
Kernal Stack Syacal|
Hansler
L= CPU L= CPU
=lalE alaie
j—

Interrupt Masking

* Interrupt handler runs with interrupts off
— Re-enabled when interrupt completes

* OS kernel can also turn interrupts off
— Eg., when determining the next process/thread to run

— On x86
* CLI: disable interrrupts
e STI: enable interrupts
e Only applies to the current CPU (on a multicore)

* We'll need this to implement synchronization in
chapter 5

Interrupt Handlers

* Non-blocking, run to completion

— Minimum necessary to allow device to take next
interrupt

— Any waiting must be limited duration
— Wake up other threads to do any real work

* Linux: semaphore

e Rest of device driver runs as a kernel thread

Case Study: MIPS Interrupt/Trap

Two entry points: TLB miss handler, everything else

Save type: syscall, exception, interrupt
— And which type of interrupt/exception

Save program counter: where to resume

Save old mode, interruptable bits to status register
Set mode bit to kernel

Set interrupts disabled

For memory faults
— Save virtual address and virtual page

Jump to general exception handler

Case Study: x86 Interrupt

Save current stack pointer
Save current program counter

Save current processor status word (condition
codes)

Switch to kernel stack; put SP, PC, PSW on stack
Switch to kernel mode

Vector through interrupt table

Interrupt handler saves registers it might clobber

Before Interrupt

Usar-lavel Process Hegisters Hermal
fao ([{ 4--eememy, N | handlar(} §
whilaf.._} { | - B pushad
= K+ :
: | CEEP
¥ o= :ll._,?: |
] :' EFLAGS
Interrupt
Usar Stack Othr Resgislers: Stack
EAX. EBX, -

During Interrupt

Usear-lavel Process Hegisters Kemeal
fa ?.l.lll'::Ii-::l. ¥ £%- ESP . . h“,-_-.d.: :-:Il'nld1
x =+ : :
v = gz CE EF |
! EFLAGS i
] [: Interrupt
sar Stack other fegtalers: Slack
EAX, EBY, :
' -
Erral
EIF
-
EFLAGS |
L
L] a3

IJgar-layal Procass

fon (b 4 e,

whilaq..] {

i
¥

!
)

K+ 1
g2

Stack

After Interrupt

Registers

£5 BESP

CE EF

EFLALS

oher regislers:
EAx, ERX.

Kamai

handlar(} f{
pushad

- n el

Interrupt
Slack

. 1m ﬂl

ERX Aegisiers

Question

* Why is the stack pointer saved twice on the
interrupt stack?

— Hint: is it the same stack pointer?

At end of handler

* Handler restores saved registers

* Atomically return to interrupted
process/thread
— Restore program counter
— Restore program stack
— Restore processor status word/condition codes
— Switch to user mode

Upcall: User-level event delivery

* Notify user process of some event that needs
to be handled right away

— Time expiration
* Real-time user interface
* Time-slice for user-level thread manager

— Interrupt delivery for VM player
— Asynchronous I/O completion (async/await)

 AKA UNIX signal

Upcalls vs Interrupts

* Signal handlers = interrupt vector
 Signal stack = interrupt stack

* Automatic save/restore registers =
transparent resume

* Signal masking: signals disabled while in signal
handler

Stack

Upcall: Before

Program Countar

Stack Folnter

signal_handliar(} §

Signal
Slack

Upcall: During

-+ Bignal_handler(} 4

Program Counter - |

S Signal
_— Stack Pointer Stank

St
Hegpedars

S

PL

RAMpREr] NS SRRl o] LPe B LU T i

Datatases Ward Pracassing

Wab Aramyers Enal

Panagie
05 Ligrary

Syxlem Cal
i el ara

Partasie Cgeraling
Spalem Egmel

Ak CL Prrani P

Kb 100MbpaT Gigs Eer

BOE. 11 alkigin ol IDE

User Pragram Hemeal

main {1 | file_openiargi, arg2) {
file_openiargi, argZ}; & do oparaon
h |
i 0 - I
(1y; (8 (3 4
i : i
Uzer Stub (Z) Kernel Stub
Feardwar Trap
Mla_opanfargl, arga) [- + file_open_ handlar]) |
push 85YSCALL_OPEW _ If copy amuenenis
irap i 1rom usaer mamaony
raturn Ty Fisum i chack argumants
! (5} e ocpenfarg1, arg2)

i oy ralum value

b USaT ey
reiurn;

Kernel System Call Handler

Locate arguments
— In registers or on user stack
— Translate user addresses into kernel addresses

Copy arguments
— From user memory into kernel memory
— Protect kernel from malicious code evading checks

Validate arguments
— Protect kernel from errors in user code

Copy results back into user memory
— Translate kernel addresses into user addresses

Sarar 4 &
| Fe— Parse Request Reply | Format Raply
: | Butter | 3 Buller | ° -
i H ; :
1. 1. 5 L 1@
Hutank, Kamel Copry File lead Kerrsal Capy Wnta and Cogy
Gackel Read 1 : H I K o | BT
] - . s
E ; ; :
1. 5. T 12,
Copy AIiving Disk Reqeest Disk Dala Format Debgoing
Packet (DAL} : | Packel and DM#
o . d =
mrdwar.& é ;--- EEEmEEmEEmEEE. .
: '] n
Metwork Interface Disk Intarfaca

Guest Usar Mode Buest Geesl

Hast Usear Mode Process Pracess
ot pd
1rap conProgram
]
Hoat User Mode
Guest Kernael Mode
Guest Kernal | | e
Guest PC 1] =1 cuest 1T ediag
cueskt 5P -1 Exraphion Geesi Nle spsiem I mapd
Guest Flags Stk ard ofer Lol Takle ..., owscall
SEMdRCES Hardkar
Hoat KemelMade
Host Kernal Thrivd
Hast PC Hast sl T Fargin
Hast 5P ---1-8f Exepbion Virea Ima mepd
Heat Flags Stk Disk Takle , ayscall
| Hardkzr

Hardwmare Physical
Dk

User-Level Virtual Machine

* How does VM Player work?
— Runs as a user-level application
— How does it catch privileged instructions, interrupts,
device I/O?
* |nstalls kernel driver, transparent to host kernel
— Requires administrator privileges!
— Modifies interrupt table to redirect to kernel VM code
— If interrupt is for VM, upcall

— If interrupt is for another process, reinstalls interrupt
table and resumes kernel

