
Operating Systems:
Principles and Practice

Mark Zbikowski
Gary Kimura

(kudos to Tom Anderson)

How This Course Fits in the UW CSE
Curriculum

• CSE 333: Systems Programming
– Project experience in C/C++
– How to use the operating system interface

• CSE 451: Operating Systems
– How to make a single computer work reliably
– How an operating system works internally

• CSE 452: Distributed Systems (spring 2018)
– How to make a set of computers work reliably,

despite failures of some nodes

Project: xk

• Build an operating system
– That can boot on a real system
– Run multiple processes
– Page virtual memory
– Store file data reliably

• We give you some basic building blocks
– Bunch of assignments, that build on each other
– Work in groups of 2

• Instructions on web page
– Download and browse code before section
– Bring laptop to section

Main Points (for today)

• Operating system definition
– Software to manage a computer’s resources for its

users and applications
• OS challenges
– Reliability, security, responsiveness, portability, …

• OS history
– How did we get here?

• How I/O works

What is an
operating system?

• Software to
manage a
computer’s
resources for its
users and
applications

Operating System Roles

• Referee:
– Resource allocation among users, applications
– Isolation of different users, applications from each other
– Communication between users, applications

• Illusionist
– Each application appears to have the entire machine to

itself
– Infinite number of processors, (near) infinite amount of

memory, reliable storage, reliable network transport
• Glue

– Libraries, user interface widgets, …

Example: File Systems

• Referee
– Prevent users from accessing each other’s files

without permission
– Even after a file is deleting and its space re-used

• Illusionist
– Files can grow (nearly) arbitrarily large
– Files persist even when the machine crashes in the

middle of a save
• Glue
– Named directories, printf, …

Question

• What (hardware, software) do you need to be
able to run an untrustworthy application?

Question

• How should an operating system allocate
processing time between competing uses?
– Give the CPU to the first to arrive?
– To the one that needs the least resources to

complete? To the one that needs the most
resources?

Example: web service

• How does the server manage many simultaneous
client requests?

• How do we keep the client safe from spyware
embedded in scripts on a web site?

• How do make updates to the web site so that clients
always see a consistent view?

OS Challenges

• Reliability
– Does the system do what it was designed to do?

• Availability
– What portion of the time is the system working?
– Mean Time To Failure (MTTF), Mean Time to Repair

• Security
– Can the system be compromised by an attacker?

• Privacy
– Data is accessible only to authorized users

OS Challenges

• Portability
– For programs:

• Application programming
interface (API)

• Abstract virtual machine
(AVM)

– For the operating system
• Hardware abstraction

layer

OS Challenges

• Performance
– Latency/response time

• How long does an operation take to complete?
– Throughput

• How many operations can be done per unit of time?
– Overhead

• How much extra work is done by the OS?
– Fairness

• How equal is the performance received by different users?
– Predictability

• How consistent is the performance over time?

OS History

Computer Performance Over Time

Early Operating Systems:
Computers Very Expensive

• One application at a time
– Had complete control of hardware
– OS was runtime library
– Users would stand in line to use the computer

• Batch systems
– Keep CPU busy by having a queue of jobs
– OS would load next job while current one runs
– Users would submit jobs, and wait, and wait, and

Time-Sharing Operating Systems:
Computers and People Expensive

• Multiple users on computer at same time
– Multiprogramming: run multiple programs at

same time
– Interactive performance: try to complete

everyone’s tasks quickly
– As computers became cheaper, more important

to optimize for user time, not computer time

Today’s Operating Systems:
Computers Cheap

• Smartphones
• Embedded systems
• Laptops
• Tablets
• Virtual machines
• Data center servers

Tomorrow’s Operating Systems

• Giant-scale data centers
• Increasing numbers of processors per

computer
• Increasing numbers of computers per user
• Very large scale storage

Device I/O

• OS kernel needs to communicate with physical
devices
– Netowrk, disk, video, USB, keyboard, mouse, …

• Devices operate asynchronously from the CPU
– Most have their own microprocessor
– Ex> Apple Watch OS runs with a laptop keyboard!

Device I/O

• How does the OS communicate with the device?
– I.O devices assigned a range of memory addresses or

“ports”
– Separate from main RAM
– CPU instructions to command/read

• Special I/O-specific instructions (inb/outb)
• Read/write memory locations

Synchronous I/O

• Polling
– I/O operations take time: 10^3 instructions to

10^8 instructions (physical limits)
– OS pokes I/O memory/port to see if I/O is done
– Device completes and stores data in device

buffers
– Kernel copies data from device into memory
– Ugh

• Can we do better?

Faster I/O: Interrupts

• Interrupts: let device tell is when it is done
– OS pokes I/O memory/port to issue request
– CPU goes back to work on some other task
– Device completes, stores data in its buffers
– Triggers CPU interrupt to signal I/O completion
– CPU copies data to/from device
– When done, resume previous work

• Can we do better?

Faster I/O: DMA

• ”Programmed I/O”
– I/O stored in the device
– Requires CPU to do heavy lifting
– Each instruction to move data is uncached, meaning

direct transfers over the I/O bus
• Direct memory access (DMA)
– Device reads/writes RAM directly
– After I/O interrupt, CPU can access results in memory

• Can we do better?

Faster I/O: Buffer Descriptors

• Buffer descriptor: data structure to specify
where to find the next I/O request
– Buffer descriptor itself is DMA’d!

• CPU/Device share a queue of buffer
descriptors

• Only interrupt if queue is empty or full

Device Interrupts

• How do device interrupts work?
– How does the CPU know what code to run?
– What language is the “interrupt handler” written

in?
– What stack does it use?
– What about the work the CPU was doing when it

was interrupted?
– How does the CPU know how to resume that

work?

Hardware Interrupt Vector

• Table set up by OS kernel
– Pointers to functions
– One per interrupt ”type”
– Indexed and dispatched by the CPU; no software

involvement
– Likely needs a little assembly code help…

Challenge: Saving/Restoring State

• We need to transparently resume execution, e.g.,
the execution of the interrupt handler is invisible
to (almost) all running code.
– Many interrupts going on

• I/O completion
• Periodic timer to share CPU among multiple apps

– Code must remain unaware that it was interrupted
• Not just instruction pointer
– Registers
– Floating point state
– Condition codes.

Textbook

• Lazowska, Spring 2012: “The text is quite
sophisticated. You won't get it all on the first
pass. The right approach is to [read each
chapter before class and] re-read each
chapter once we've covered the
corresponding material… more of it will make
sense then. Don't save this re-reading until
right before the mid-term or final – keep up.”

