
Section 8: Lab 4C & Lab 5
CSE 451 18SP



Announcements

● 4 Additional Late days for Labs 1-5
○ This gives you a total of 8 late days for the labs

● Lab 4C deadline is May 22nd
● Lab X proposal Due May 18th

○ That’s tomorrow!

● Lab 5 deadline is May 29th
○ No checkpoints this time, just the whole lab

● Lab X deadline is June 4th
○ Lab X demos are June 1st. You can show it off if you get it done by then!
○ Cannot use late days on Lab X



Hardware interrupts

● Clock interrupts allow you to protect the system against bugs and 
malicious code in a user environment

● External Interrupts (ie, device interrupts) are referred to as IRQ’s. There are 
16 standard IRQ’s that are used in JOS, numbered 0-15
○ IRQ’s are mapped to the IDT as IRQ_OFFSET + IRQ#
○ You will need to set these up in kern/trapentry.S and kern/trap.c, very similar to what you 

have done in Lab 3
○ Also need to make sure that user environments run with interrupts enabled (wouldn’t really 

be much point to adding them if they didn’t do anything)

● Using IRQ’s you can set up preemption and keeping track of time with 
clock interrupts



IPC (Inter-Process Communication)

● Up to this point, processes (environments) have been completely isolated 
from each other when it comes to memory and data. IPC allows processes 
to communicate and share data.

● Implemented using System calls, ipc_send and ipc_recieve
○ Allows a process to share a 32 bit value, and a page mapping. This is good way to transfer 

more data than 32 bits, an allows processes to set up shared memory



JOS File System

● In lecture yesterday we talked about the xv6 file system. The JOS file 
system has a lot of similarities, it is laid out like this:
○ Boot Block

■ The first block, contains the boot sector and partition table
○ Superblock

■ The second block, contains metadata about the disk layout
○ Bitmap

■ A number of blocks used to determine which disk blocks are allocated
○ File/Directory Data Blocks

■ Contains the file/directory metadata (called inodes in most cases)
■ Disk blocks containing the contents of files





File Struct

● f_name
○ The name of the file

● f_size 
○ The size of the file

● f_type
○ The type of the File struct. It is either a file or a directory. If it is a directory, then that 

means that the data it points to is other File structs

● f_direct
○ An array of references to file data blocks (stored on disk)

● f_indirect
○ For larger files, this is a reference to a blocks that has more pointers to data blocks





Disk Access

● It is nice you are working on a simulated OS, because you could potentially 
corrupt the disk when working on parts of this lab.

● If you accidentally corrupt the simulated disk and the OS breaks, you can 
reset it back to normal with:
○ $ rm obj/kern/kernel.img obj/fs/fs.img

$ make
○ Or
○ $ make clean

$ make



Implementing the File System

● You won’t be writing the whole file system yourself from scratch, so make 
sure you read through all the new Lab 5 code carefully
○ inc/fs.c will be your friend

● Will need to read blocks into the block cache and flush them back to disk
○ The block cache is a simple buffer that stores disk blocks you are using, to reduce the 

number of times we have to go to and from disk (in general a slow operation)
○ fs/bc.c

● Will need to allocating disk blocks; mapping file offsets to disk blocks; and 
implementing read, write, and open in the IPC interface.

● When all is said and done, you can run a shell!


