
Section 6: Lab 4
CSE 451 18SP



Announcements

● Lab 4A Due May 8th
● Lab 4B Due May 15th
● Lab 4C Due May 22nd

○ Only needs to pass the tests at the Lab 4C Deadline
○ Other deadlines are just checkpoints (but still turn something in)

● Lab X proposals due May 18th
● We have lecture again on Friday (Guest Lecture!)



Review of processes and switching

● When you have more than 1 cpu, you can run multiple processes at the 
same time

● Process = Environment, these 2 words mean pretty much the same thing 
for our purposes
○ There is also “thread” which also means kind of the same thing, but the context of thread 

can be different

● Processes need to keep track of their own stack and cpu registers when 
they switch
○ Question: How does JOS accomplish this with its environments?



Lots of new acronyms 

● APIC - Advanced Programmable Interrupt Controller
○ A Programmable Interrupt Controller is a device that is used to combine several sources of 

interrupt onto one or more CPU lines, while allowing priority levels to be assigned to its 
interrupt outputs. From Wikipedia

● SMP - Symmetric Multiprocessing
● BSP - Bootstrap Processor
● AP - Application Processor
● LAPIC - Local APIC

○ The LAPIC units are responsible for delivering interrupts throughout the system

● MMIO - Memory Mapped I/O

https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller


Locks and Fun with Concurrency

● Locks: Used to stop multiple processes from executing the same code
○ In Lab 4, the locks are known as Spinlocks (see spinlock.c/h)

● With concurrency comes the fun issue of: Non-deterministic bugs
○ Where your code may work sometimes, and crash others

● Good Luck!



Lab 4 Part A: Multiprocessor JOS

● Exercises 1-4 are about setting JOS up to be able to use multiple CPUs
● The code for these exercises is not particularly long, it is mainly about 

understanding what is going on and what you are setting up



Big Kernel Lock

● Though you may have multiple CPUs running multiple user environments, 
you only every want one environment running the kernel at any time
○ Why is this important?

● JOS uses a single big lock for the kernel, to make sure only one process is 
executing it at a time

● Exercise 5 is about locking/unlocking in the Big Lock certain places



Cooperative (Round Robin Scheduling)

● Exercise 6 is about setting up cooperative scheduling for environment
● Environments use a system call to yield control of the CPU, allowing the 

scheduler to let another process run
● Env_state is very important in determining which process to run next. Do 

not want the case where 2 CPUs are running the same environment
● Question: Why can’t we always use cooperative scheduling? Why do we 

need to change it in part C?



System Calls for Environment Creation

● Allowing user environments to create new environments
○ Vital to the operation of any OS

● For Exercise 7, system calls are implemented for a very primitive fork 
wastes a lot of extra memory
○ dumbfork



Park B: Smart Fork (Copy on Write Fork)

● Will go over it next week in section


