
Memory Consistency Models
CSE 451
James Bornholt

Memory consistency models
The short version:
• Multiprocessors reorder memory

operations in unintuitive, scary ways
• This behavior is necessary for performance
• Application programmers rarely see this

behavior
• But kernel developers see it all the time

Multithreaded programs

Initially A = B = 0

Thread 1 Thread 2
A = 1
if (B == 0)
 print “Hello”;

B = 1
if (A == 0)
 print “World”;

What can be printed?
• “Hello”?
• “World”?
• Nothing?
• “Hello World”?

Things that shouldn’t happen

This program should never print “Hello World”.

Thread 1 Thread 2
A = 1
if (B == 0)
 print “Hello”;

B = 1
if (A == 0)
 print “World”;

Things that shouldn’t happen

This program should never print “Hello World”.

Thread 1 Thread 2
A = 1
if (B == 0)

 print “Hello”;

B = 1
if (A == 0)

 print “World”;

A “happens-before” graph shows the order in which events
must execute to get a desired outcome.
• If there’s a cycle in the graph, an outcome is impossible—an

event must happen before itself!

Sequential consistency
• All operations executed in some sequential order

• As if they were manipulating a single shared memory
• Each thread’s operations happen in program order

(This is the interleaving model you probably remember from 332)

Thread 1 Thread 2
A = 1
r0 = B

B = 1
r1 = A

Not allowed: r0 = 0 and r1 = 0

Sequential consistency
Can be seen as a “switch” running one instruction at a time

Memory
A = 0
B = 0

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed

Sequential consistency
Can be seen as a “switch” running one instruction at a time

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed
Memory

A = 0
B = 0

Sequential consistency
Can be seen as a “switch” running one instruction at a time

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed
A = 1 Memory

A = 1
B = 0

Sequential consistency
Can be seen as a “switch” running one instruction at a time

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed
A = 1 Memory

A = 1
B = 0

Sequential consistency
Can be seen as a “switch” running one instruction at a time

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed
A = 1

B = 1

Memory
A = 1
B = 1

Sequential consistency
Can be seen as a “switch” running one instruction at a time

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed
A = 1

B = 1

Memory
A = 1
B = 1

Sequential consistency
Can be seen as a “switch” running one instruction at a time

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed
A = 1

B = 1

r1 = A (= 1)

Memory
A = 1
B = 1

Sequential consistency
Can be seen as a “switch” running one instruction at a time

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed
A = 1

B = 1

r1 = A (= 1)

Memory
A = 1
B = 1

Sequential consistency
Can be seen as a “switch” running one instruction at a time

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed
A = 1

B = 1

r1 = A (= 1)

Memory
A = 1
B = 1

r0 = B (= 1)

Sequential consistency
Two invariants:
• All operations executed in some sequential order
• Each thread’s operations happen in program order

Says nothing about which order all operations happen in
• Any interleaving of threads is allowed

• Due to Leslie Lamport in 1979

Memory consistency models
• A memory consistency model defines the permitted

reorderings of memory operations during execution

• A contract between hardware and software: the hardware
will only mess with your memory operations in these ways

• Sequential consistency is the strongest memory model: allows
the fewest reorderings/strange behaviors
• (At least until you take 452!)

Assume sequential consistency, and all variables are initially 0.

Can r0 = 0 and r1 = 0? (3) → (4) → (1) → (2)
Can r0 = 1 and r1 = 1? (1) → (2) → (3) → (4)
Can r0 = 0 and r1 = 1? (1) → (3) → (4) → (2)
Can r0 = 1 and r1 = 0? No!

Pop Quiz!

Thread 1 Thread 2
X = 1
Y = 1

r0 = Y
r1 = X

(1)
(2)

(3)
(4)

Why sequential consistency?
• Agrees with programmer intuition!

Why not sequential consistency?
• Horribly slow to guarantee in hardware

• The “switch” model is overly conservative

The problem with SC

Memory

Core 1
A = 1
r0 = B

Core 2
B = 1
r1 = A

Executed
A = 1

These two instructions
don’t conflict—there’s no
need to wait for the first

one to finish!

And writing to memory
takes forever*

*about 100 cycles = 30 ns

Optimization: Store buffers
• Store writes in a local buffer and then proceed to next

instruction immediately
• The cache will pull writes out of the store buffer when it’s

ready

Core 1
Thread 1

Store buffer

Caches
A = 0
B = 0

Memory
A = 0
B = 0

A = 1
r0 = B

Optimization: Store buffers
• Store writes in a local buffer and then proceed to next

instruction immediately
• The cache will pull writes out of the store buffer when it’s

ready

Core 1
Thread 1

Store buffer

Caches
C = 0

Memory
C = 0

C = 1
r0 = Cr0 = C
C = 1

Store buffers change memory behavior

Core 1 Core 2 Thread 1 Thread 2
(1)
(2)

(3)
(4)Store buffer Store buffer

Memory
A = 0
B = 0

Can r0 = 0 and r1 = 0?
SC: No!

A = 1
r0 = B

B = 1
r1 = A

Store buffers change memory behavior

Core 1 Core 2 Thread 1 Thread 2

Store buffer Store buffer

Memory
A = 0

B = 0

Can r0 = 0 and r1 = 0?
SC: No!

r0 = B r1 = A

Executed
r0 = B (= 0)

r1 = A (= 0)

A = 1

B = 1

A = 1 B = 1

Store buffers: Yes!

(1)
(2)

(3)
(4)

So, who uses store buffers?
Every modern CPU!
• x86
• ARM
• PowerPC
• …

A Volatile-by-Default JVM for Server Applications. Liu, Millstein, Musuvathi. OOPSLA 2017.

Sl
ow

do
w

n
w

ith
ou

t s
to

re
 b

uff
er

s

0.0

0.5

1.0

1.5

2.0

avrora fop h2 jython luindex pmd sunflow tomcat xalan

Java: 7—81%
slower without store

buffers

Total Store Ordering (TSO)
• Sequential consistency plus

store buffers
• Allows more behaviors than SC

• Harder to program!

• x86 specifies TSO as its
memory model

Write buffer

More esoteric memory models
• Partial Store Ordering (used by SPARC)

• Write coalescing: merge writes to the same cache line
inside the write buffer to save memory bandwidth

• Allows writes to be reordered with other writes

Thread 1
X = 1
Y = 1

Z = 1

Assume X and Z
are on the same
cache line

Executed
X = 1

Z = 1

Y = 1

X = 1
Y = 1

Z = 1

More esoteric memory models
• Weak ordering (ARM, PowerPC)

• No guarantees about operations on data!
• Almost everything can be reordered
• One exception: dependent operations are ordered

ldr r0, #y
ldr r1, [r0]
ldr r2, [r1]

int** r0 = y; // y stored in r0
int* r1 = *y;
int* r2 = *r1;

Even more esoteric memory models
• DEC Alpha

• A successor to VAX…
• Killed in 2001

• Dependent operations can be reordered!

• Lowest common denominator for the Linux kernel

1998 2003 2015 Inc.

This seems like a nightmare!
• Every architecture provides synchronization primitives to make

memory ordering stricter
• Fence instructions prevent reorderings, but are expensive
• Other synchronization primitives: read-modify-write/

compare-and-swap/atomics, transactional memory, …

movl $1,%[x]
movl %[y],%eax

movl $1,%[y]
movl %[x],%ebx

movl $1, %ecx
xchg %ecx, %[x]movl $1,%[x]
mfence
movl %[y],%eax

movl $1, %ecx
xchg %ecx, %[y]movl $1,%[y]
mfence
movl %[x],%eax

But it’s not just hardware…

Thread 1
X = 0
for i=0 to 100:
 X = 1
 print X

Thread 1
X = 1
for i=0 to 100:
 print X

Thread 2
X = 0

Thread 2
X = 0

compiler

11111000000…

11111111111…11111111111…

11111011111…

Are computers broken?
• Every example so far has involved a data race

• Two accesses to the same memory location
• At least one is a write
• Unordered by synchronization operations

• If there are no data races, reordering behavior doesn’t matter
• Accesses are ordered by synchronization, and

synchronization forces sequential consistency
• Note this is not the same as determinism

Memory models in the real world
• Modern (C11, C++11) and not-so-modern (Java 5) languages

guarantee sequential consistency for data-race-free
programs (“SC for DRF”)
• Compilers will insert the necessary synchronization to

cope with the hardware memory model

• No guarantees if your program contains data races!
• The intuition is that most programmers would consider a

racy program to be buggy
• Use a synchronization library!

• Incredibly difficult to get right in the compiler and kernel
• Countless bugs and mailing list arguments

Memory models in the Linux kernel
• New in 2018: a formal Linux kernel memory model

• tools/memory-model/Documentation/explanation.txt
• Only 12,000 words!

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt

“Reordering” in computer architecture
• Today: memory consistency models

• Ordering of memory accesses to different locations
• Visible to programmers!

• Cache coherence protocols
• Ordering of memory accesses to the same location
• Not visible to programmers

• Out-of-order execution
• Ordering of execution of a single thread’s instructions
• Significant performance gains from dynamically scheduling
• Not visible to programmers

• Except through bugs — Spectre/Meltdown

Memory consistency models
• Define the allowed reorderings of memory

operations by hardware and compilers
• A contract between hardware/compiler

and software
• Necessary for good performance?

• Is 7—81% worth all this trouble?

