
Section 3: Virtual Memory
CSE 451 18SP

Announcements

● Lab 2 is due Tuesday 4/17 @ 11pm
○ Don’t forget to answer questions!

Free List Review
(on board)

Address
Translation

Page Table Entry

From Intel Manual: https://courses.cs.washington.edu/courses/cse451/18sp/readings/i386/s05_02.htm

https://courses.cs.washington.edu/courses/cse451/18sp/readings/i386/s05_02.htm

JOS Address Translation (Note PTE is simplified, see previous slide for full format)

pgdir
0xff000000

1

1

1

1

0xff001000

0xff008000

0xffa00000

0xff400000

...

...

...

Index

0

16

379

1023

page table page
0xff001000

1

1

0x001a3000

0x001a9000

...

Index

283

374
...

...

page table page
0xff008000

1

1

0x001bc000

0x001bf000

...

Index

386

619
...

...

page table page
0xffa00000

1

1

0x001e0000

0x001ed000

...

Index

98

948
...

...

page table page
0xff400000

1

1

0x001d5000

0x001d9000

...

Index

326

725
...

...

VA: 0x5ec62b56

JOS Address Translation (Note PTE is simplified, see previous slide for full format)

pgdir
0xff000000

1

1

1

1

0xff001000

0xfff08000

0xfffa0000

0xff400000

...

...

...

Index

0

16

379

1023

VA: 0x5ec62b56 1) Get binary representation of the virtual address:
 01011110110001100010101101010110

2) Extract first 10 bits
 01011110110001100010101101010110

3) Convert this to an index into the page directory:
 0101111011 binary = 379 decimal

4) Locate the PDE stored in index 379

5) Look at what address the page table page is
jjjjjjjjjstored at

JOS Address Translation (Note PTE is simplified, see previous slide for full format)

page table page
0xffa00000

1

1

0x001e0000

0x001ed000

...

Index

98

948
...

...

VA: 0x5ec62b56 1) Extract the next 10 bits:
 01011110110001100010101101010110

3) Convert this to an index into the page table:
 0001100010 binary = 98 decimal

4) Locate the PTE stored in index 98

5) Look at what the physical address is

6) Use last 12 bits as offset (3 hex digits = 12 bits)
 Physical Address = 0x001e0b56

Paging

Memory vs Disk

Diagram from CSE 351 18WI slides

● Memory is in close proximity to the
CPU

○ Fast!
○ Volatile (loss of power == loss of all data

in memory)
○ More expensive

● Disk is farther away from the CPU
○ Much slower than main memory
○ Non-volatile (loss of power != loss of data),

persistent
○ Less expensive

Virtual Memory

● Illusion that each
process has all of
memory to itself

● Would be nice if this
illusion held even
when processes
together use more
space than available
in memory

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Page 8

Page 9

Page 10

Page 11

Page 12

Page 13
...

Page 1024

Memory
(4MB)

= Page in Use

Process 1

Using 512 pages

Process 2

Using 256 pages

Process 3

Using 256 pages

Pages
Used

512

768

1024

Process 4

Using 256 pages 1280!
With paging, this

is possible!

Creating the illusion of more memory

● Since we need to make it seem
like there is more than 4MB of
memory, we will need somewhere
else to store data

● Can use the disk to store extra
data, and page it in to memory on
demand (called “paging”)

Memory

Disk

Paging Example - Assumes OS has only 4 pages memory for simplicity

Memory
Page 1

Page 2

Page 3

Page 4

1 2
3 4
5 6
7 8

Swap
Pages

Disk

= Available = In Use

Process 1

Process 2

This mapping could be obtained as a
result of the following requests:

Proc 1: Requests a page of memory

Proc 2: Requests a page of memory

Proc 1: Requests a page of memory

Proc 2: Requests a page of memory

Note: This example is highly simplified

Paging Example - Swap page to disk

Memory
Page 1

Page 2

Page 3

Page 4

1 2
3 4
5 6
7 8

Swap
Pages

Disk

= Available = In Use

Process 1

Process 2

Process 1

requests an

additional page

Memory

Page 2

Page 3

Page 4

2
3 4
5 6
7 8

Swap
Pages

Disk

Process 1

Process 2

1

Page 1

1. Move the least

recently used page

to disk!

2. Allocate the

new page!

Paging Example - Page fault (Page not present), Part 1

= Available = In Use

Process 1 tries to

read from its 1st

page

Page Fault!

Memory

Page 2

Page 3

Page 4

2
3 4
5 6
7 8

Swap
Pages

Disk

Process 1

Process 2

1
2

1
2

3

1

Page 1

Need to make room

for the page stored

on disk.

1. Move the least

recently used page to

disk to make room!

Memory

Page 3

Page 4

3 4
5 6
7 8

Swap
Pages

Disk

Process 1

Process 2

1
2

1
2

3

1

Page 1

2

Page 2

Continued on next slide...

Paging Example - Page fault (Page not present), Part 2

= Available = In Use

Process 1 tries to

read from its 1st

page

Page Fault!

Now that we have an

empty spot in

memory:

2. Move the

requested page into

memory.

Memory

Page 3

Page 4

3 4
5 6
7 8

Swap
Pages

Disk

Process 1

Process 2

1
2

1
2

3

1

Page 1

2

Page 2

Memory

Page 3

Page 4

3 4
5 6
7 8

Swap
Pages

Disk

Process 1

Process 2

1
2

1
2

3

1

Page 1

2

Page 2

