Rebootless Kernel Updates

Srivatsa S. Bhat
VMware
srivatsa@csail.mit.edu

University of Washington
3 Dec 2018

mailto:srivatsa@csail.mit.edu

Why are reboots undesirable?

Why are reboots undesirable?

Remember this? ©

~ Please do not power off or unplug your machine.
Installing update 11 of 208 ..

-

s~
e,

T

w. WIindows 7 Professional

Why are reboots undesirable?

Why are reboots undesirable?

Downtime:

 Shutdown + Boot + App startup

Loss of state (eg: network connections)
Loss of results from long running processes
Unexpected complications

Why do kernel updates need rebooting?

Why do kernel updates need rebooting?

 Kernel manages hardware
* Driver updates may require re-init of hardware
 Userspace programs need kernel services

e System calls, signals, IPC etc

Why would you want live kernel updates?

* Minimal service disruption
* Apply security (CVE) fixes ASAP without scheduled

maintenance windows
* Avoid application start-up times following OS updates

Adding kernel code on the fly

e Loadable kernel modules

Live kernel updates wishlist

Ability to fix bugs/vulnerabilities in any part of the kernel
(both core + module code)

Small update latency (say, < 10 seconds)

Ability to rollback on update failure

Minimal programmer effort to tailor fixes to live update
scenarios

Live update approaches for Linux

Ksplice (MIT/Oracle)

kGraft (SUSE)

Kpatch (RedHat)

Livepatch (Upstream) [inspired by kGraft + kpatch]

Ksplice

Works at the level of object-code
Function-level code replacement
Latency: 0.7 milliseconds

Workflow:

* Generate binary replacement code using pre-post differencing
* Resolve symbols and verify safety using run-pre matching

* Use stop-machine for quiescence and perform code update

Ksplice : Generating repl code using pre-post differencing

Kernel’s source
Source patch

/ o

binary diff

Post obj files Pre obj files

Extract functions that
differed

List of functions that differ

Post code functions
that differed

Generic

kernel
module

Primary module
Linker) -

Processed post obj

file —-

stop-machine framework in Linux

* Mechanism to run a given function on a given CPU with the
rest of the machine stopped!

stop-machine framework in Linux

Mechanism to run a given function on a given CPU with the
rest of the machine stopped!

“Stopper threads” created for each CPU during boot
* Have highest priority in the system

 Execute only in kernel mode

* Typically in non-runnable state

stop-machine framework in Linux

Mechanism to run a given function on a given CPU with the
rest of the machine stopped!

“Stopper threads” created for each CPU during boot
* Have highest priority in the system

 Execute only in kernel mode

* Typically in non-runnable state

stop-machine flow:

 Mark all per-CPU stopper threads as runnable

 Each stopper thread preempts userspace and hogs the CPU
* Interrupts disabled on each CPU

* Runs the requested function on the specified CPU

kGraft

Replaces entire functions
Uses ftrace to perform code patching
Process by process transition to new kernel code:
* Old vs New Universe
 Band-Aid functions that understand both old and new
layouts of data-structures
* Uses fake signals to force “slow” processes to transition

Needs special care to deal with:
 Kernel threads
* Interrupt handlers

kpatch

* Similar to kGraft for the most part
A fundamental difference from kGraft:
* Uses stop-machine for quiescence:
 Examine kernel stacks of all processes with machine
stopped.
* If function not on any stack, proceed to patch.
 Can’t patch functions always found on the stack
 Eg: schedule()

Livepatch

* Best of both kGraft and kpatch
* Consistency model:
* Supports both stop-machine and process-by-process
transition
e Stack traces used to be unreliable
 Assembly routines may not setup stack frames
* Fixed by ORC unwinder + objtool (stack validation)

Challenges for Livepatch / similar mechanisms

e Data-structure / semantic changes
e (Partially) solved using shadow data-structures
 Changes to initialization routines
 Changes to static variables
* Dealing with compiler optimizations
* Patching hand-written assembly
 Handling changes in locking rules
 Patching modules that are not yet loaded
 Patching patched kernels
* Reverting live patches in case of failures

 Undecidability: In the general case, can’t prove that patch +
state transition leads to valid state.

“Seamless” kernel updates

e Achieved via a combination of:

Kexec — exec a new kernel image from a running kernel
CRIU — Checkpoint Restore In Userspace

 Approach:

Similar to hibernation, but more generic

Checkpoint all userspace state using CRIU to disk

* Kernel-version agnostic checkpointed state/format
Kexec into new kernel

Restore all userspace from checkpointed image

Kernel updates via kexec + CRIU

e Latency improvements
* |ncremental checkpoints
* On-demand restore
* Persistent Physical Pages

Kernel updates via kexec + CRIU

* Demo
 https://gts3.org/pages/kup.html

https://gts3.org/pages/kup.html

PROTEQOS

Assumes microkernel design (eg: Minix)

Performs process-level updates (unlike function-level updates)
State quiescence (unlike function quiescence)
State-transfer between old/new process versions

Uses LLVM link-time pass for instrumentation

Per-update state filters and interface filters

Strictly event-driven process loops

Structured design to handle many live update complications
Supports a wider range of OS updates automatically than
Livepatch-like approaches.

Updating the microkernel itself might be challenging.

Revisiting the wishlist — Are we there yet?

Ability to fix bugs/vulnerabilities in any part of the kernel
(both core + module code)

Minimal update latency (say, < 10 seconds)

Ability to rollback on update failure

Minimal programmer effort to tailor fixes to live update
scenarios

References

Ksplice : Automatic Rebootless Kernel Updates
https://pdos.csail.mit.edu/papers/ksplice:eurosys.pdf

kGraft, kpatch and Livepatch:

* https://lwn.net/Articles/596854/
* https://lwn.net/Articles/597407/
* https://lwn.net/Articles/734765/

Kexec + CRIU : Instant OS Updates via Userspace Checkpoint-and-Restart
https://www.usenix.org/system/files/conference/atc16/atcl6 paper-
kashyap.pdf

PROTEOS: Safe and Automatic Live Update for Operating Systems
https://www.cs.vu.nl/~giuffrida/papers/asplos-2013.pdf

https://pdos.csail.mit.edu/papers/ksplice:eurosys.pdf
https://lwn.net/Articles/596854/
https://lwn.net/Articles/597407/
https://lwn.net/Articles/734765/
https://www.usenix.org/system/files/conference/atc16/atc16_paper-kashyap.pdf
https://www.cs.vu.nl/~giuffrida/papers/asplos-2013.pdf

