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Why are reboots undesirable?



Why are reboots undesirable?
Remember this? J



Why are reboots undesirable?



Why are reboots undesirable?
• Downtime:
• Shutdown + Boot + App startup

• Loss of state (eg: network connections)
• Loss of results from long running processes
• Unexpected complications



Why do kernel updates need rebooting?



Why do kernel updates need rebooting?
• Kernel manages hardware
• Driver updates may require re-init of hardware

• Userspace programs need kernel services
• System calls, signals, IPC etc



Why would you want live kernel updates?
• Minimal service disruption
• Apply security (CVE) fixes ASAP without scheduled 

maintenance windows
• Avoid application start-up times following OS updates



Adding kernel code on the fly
• Loadable kernel modules



Live kernel updates wishlist
• Ability to fix bugs/vulnerabilities in any part of the kernel 

(both core + module code)
• Small update latency (say, < 10 seconds)
• Ability to rollback on update failure
• Minimal programmer effort to tailor fixes to live update 

scenarios



Live update approaches for Linux
• Ksplice (MIT/Oracle)
• kGraft (SUSE)
• Kpatch (RedHat)
• Livepatch (Upstream) [ inspired by kGraft + kpatch ]



Ksplice
• Works at the level of object-code
• Function-level code replacement
• Latency: 0.7 milliseconds

• Workflow:
• Generate binary replacement code using pre-post differencing
• Resolve symbols and verify safety using run-pre matching
• Use stop-machine for quiescence and perform code update



Ksplice : Generating repl code using pre-post differencing
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stop-machine framework in Linux
• Mechanism to run a given function on a given CPU with the 

rest of the machine stopped!
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• “Stopper threads” created for each CPU during boot
• Have highest priority in the system
• Execute only in kernel mode
• Typically in non-runnable state



stop-machine framework in Linux
• Mechanism to run a given function on a given CPU with the 

rest of the machine stopped!

• “Stopper threads” created for each CPU during boot
• Have highest priority in the system
• Execute only in kernel mode
• Typically in non-runnable state

• stop-machine flow:
• Mark all per-CPU stopper threads as runnable
• Each stopper thread preempts userspace and hogs the CPU
• Interrupts disabled on each CPU

• Runs the requested function on the specified CPU



kGraft
• Replaces entire functions
• Uses ftrace to perform code patching
• Process by process transition to new kernel code:
• Old vs New Universe
• Band-Aid functions that understand both old and new 

layouts of data-structures
• Uses fake signals to force “slow” processes to transition

• Needs special care to deal with:
• Kernel threads
• Interrupt handlers



kpatch
• Similar to kGraft for the most part
• A fundamental difference from kGraft:
• Uses stop-machine for quiescence:
• Examine kernel stacks of all processes with machine 

stopped.
• If function not on any stack, proceed to patch.
• Can’t patch functions always found on the stack
• Eg: schedule()



Livepatch
• Best of both kGraft and kpatch
• Consistency model:
• Supports both stop-machine and process-by-process 

transition
• Stack traces used to be unreliable
• Assembly routines may not setup stack frames
• Fixed by ORC unwinder + objtool (stack validation)



Challenges for Livepatch / similar mechanisms
• Data-structure / semantic changes
• (Partially) solved using shadow data-structures

• Changes to initialization routines
• Changes to static variables
• Dealing with compiler optimizations
• Patching hand-written assembly
• Handling changes in locking rules
• Patching modules that are not yet loaded
• Patching patched kernels
• Reverting live patches in case of failures
• …
• Undecidability: In the general case, can’t prove that patch + 

state transition leads to valid state.



“Seamless” kernel updates
• Achieved via a combination of:
• Kexec – exec a new kernel image from a running kernel
• CRIU – Checkpoint Restore In Userspace

• Approach:
• Similar to hibernation, but more generic
• Checkpoint all userspace state using CRIU to disk
• Kernel-version agnostic checkpointed state/format

• Kexec into new kernel
• Restore all userspace from checkpointed image



Kernel updates via kexec + CRIU
• Latency improvements
• Incremental checkpoints
• On-demand restore
• Persistent Physical Pages



Kernel updates via kexec + CRIU
• Demo
• https://gts3.org/pages/kup.html

https://gts3.org/pages/kup.html


PROTEOS
• Assumes microkernel design (eg: Minix)
• Performs process-level updates (unlike function-level updates)
• State quiescence (unlike function quiescence)
• State-transfer between old/new process versions
• Uses LLVM link-time pass for instrumentation
• Per-update state filters and interface filters
• Strictly event-driven process loops
• Structured design to handle many live update complications
• Supports a wider range of OS updates automatically than 

Livepatch-like approaches.
• Updating the microkernel itself might be challenging.



Revisiting the wishlist – Are we there yet?
• Ability to fix bugs/vulnerabilities in any part of the kernel 

(both core + module code)
• Minimal update latency (say, < 10 seconds)
• Ability to rollback on update failure
• Minimal programmer effort to tailor fixes to live update 

scenarios
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