
CSE 451 Spring 2018
Final Solutions

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

mean 79.60, median 81, stdev 8.77

I. (15 points) Warm-up
Circle true or false for each statement (no need to justify your answers here).

True False The JOS kernel runs above KERNBASE because the x86 CPU requires kernel
code to reside in the higher half of the address space.

Solution: F

True False The xv6 kernel uses one kernel stack per process, while the JOS kernel uses
one kernel stack per CPU.

Solution: T

True False The xv6 kernel can take hardware interrupts while running in both kernel and
user mode, and the JOS kernel takes hardware interrupts only in kernel mode.

Solution: F

True False Meltdown is a bug caused by the OS kernel incorrectly setting the U bit for
the kernel portion of the virtual address space in the page table.

Solution: F

True False A formally verified OS kernel must be free of bugs, as it provides a mathemat-
ical proof showing that its implementation adheres to its specification.

Solution: F

Page 2 of 12

II. (15 points) Exceptions
Ben Bitdiddle is debugging a crash in his JOS. He observes the following output:

...
TRAP frame at 0xf021c000

edi 0x00000000
esi 0x00000000
ebp 0xeebfdfd0
oesp 0xefffffdc
ebx 0x00000000
edx 0x00000000
ecx 0x00000000
eax 0xeec00000
es 0x----0023
ds 0x----0023
trap 0x0000000e Page Fault
cr2 0x00000000
err 0x00000006 [user, write, not-present]
eip 0x00800036
cs 0x----001b
flag 0x00000082
esp 0xeebfdfd0
ss 0x----0023

...

To help Ben understand the output, please match the output to their descriptions: for each of the
five lines of output observed by Ben, choose a letter of the most appropriate description from below
and fill in the blank. Each letter may be used once, more than once, or not at all.

i trap 0x0000000e

c cr2 0x00000000

g err 0x00000006

d eip 0x00800036

e flag 0x00000082

a. the physical memory address that the CPU attempts to access when a page fault occurs
b. the physical memory address of an instruction being executed where a page fault occurs
c . the virtual memory address that the CPU attempts to access when a page fault occurs
d. the virtual memory address of an instruction being executed where a page fault occurs
e. the saved value of the EFLAGS register from user space
f . the saved value of the EFLAGS register from kernel space
g. the error code pushed by the CPU
h. the error code pushed by the JOS kernel
i . the exception vector number

Page 3 of 12

III. Virtual memory
(a) (15 points) Check either “physical address” or “virtual address” for underlined values from

JOS (no need to justify your answers here).

A memory range starting from 0x000f0000 in an E820 memory map:
∎ physical address ◻ virtual address

MPENTRY_PADDR (0x7000) at which application processors (APs) start running:
∎ physical address ◻ virtual address

The address of the Interrupt Descriptor Table (IDT) loaded into the CPU:
◻ physical address ∎ virtual address

The struct Trapframe *tf pointer passed into the trap() function in the kernel:
◻ physical address ∎ virtual address

The value of the stack pointer register %esp right before the kernel enters the trap() function:
◻ physical address ∎ virtual address

Page 4 of 12

(b) After working on the JOS labs, Alyssa P. Hacker decides to develop a hypervisor and plans
to use the extended page-table (EPT) to safely isolate multiple virtual machines through the
virtualization of physical memory. When EPT is in use, physical addresses in virtual ma-
chines (known as guest-physical addresses) are translated by traversing a set of EPT paging
structures to produce physical addresses that are used to access memory.
In particular, Alyssa is interested in a two-level EPT plan: an EPT starts from the extended-
page-table pointer (EPTP), which holds the address of the first-level EPT paging structure, the
EPT PML4 table (which in turn points to the next level). This is illustrated as follows:

extended-page-table
pointer (EPTP)

63 48 47 39 38 30

guest-physical address
029

EPT PML4
Table EPT

page-directory-pointer
table (PDPT)

1GB Memory Page

EPT PML4E
EPT PDPTE

In some way, this plan looks similar to the two-level paging used by JOS, with a few differences.
For example, the architecture is 64-bit (rather than 32-bit); the root of the EPT is held in
EPTP (rather than CR3); and this EPT controls 1-GB pages (rather than 4-KB pages). Your job
is to help Alyssa based on your experience with JOS.
The following is a slightly modified excerpt from Intel’s manuals. You may want to read the
questions before reading the excerpt.

*** BEGINNING OF EXCERPT ***

The EPT translation mechanism uses only bits 47:0 of each guest-physical address. In this plan,
it uses a page-walk length of 2, meaning that 2 EPT paging-structure entries are accessed to
translate a guest-physical address. These 48 bits are partitioned by the logical processor to
traverse the EPT paging structures:
• A 4-KByte naturally aligned EPT PML4 table is located at the physical address specified in
bits 51:12 of the extended-page-table pointer (EPTP), a field in the virtual machine control
structure. An EPT PML4 table comprises 512 64-bit entries (EPT PML4Es). An EPT PML4E
is selected using the physical address defined as follows:

Page 5 of 12

– Bits 63:52 are all 0.
– Bits 51:12 are from the EPTP.
– Bits 11:3 are bits 47:39 of the guest-physical address.
– Bits 2:0 are all 0.

Because an EPTPML4E is identified using bits 47:39 of the guest-physical address, it controls
access to a 512-GByte region of the guest-physical-address space.

• A 4-KByte naturally aligned EPT page-directory-pointer table (PDPT) is located at the
physical address specified in bits 51:12 of the EPT PML4E. An EPT page-directory-pointer
table (PDPT) comprises 512 64-bit entries (EPT PDPTEs). An EPT PDPTE is selected using
the physical address defined as follows:
– Bits 63:52 are all 0.
– Bits 51:12 are from the EPT PML4E.
– Bits 11:3 are bits 38:30 of the guest-physical address.
– Bits 2:0 are all 0.

Because an EPT PDPTE is identified using bits 47:30 of the guest-physical address, it controls
access to a 1-GByte region of the guest-physical-address space. Use of the EPT PDPTE
depends on the value of bit 7 in that entry:

• If bit 7 of the EPT PDPTE is 1, the EPT PDPTE maps a 1-GByte page. The final physical
address is computed as follows:
– Bits 63:52 are all 0.
– Bits 51:30 are from the EPT PDPTE.
– Bits 29:0 are from the original guest-physical address.

• Alyssa does not plan to support the case where bit 7 of the EPT PDPTE is 0.

An EPT paging-structure entry is present if any of bits 2:0 is 1; otherwise, the entry is not
present. A reference using a guest-physical address whose translation encounters an EPT
paging-structure that is not present causes an EPT violation.

The following figure gives a summary of the formats of the EPTP and the EPT paging-structure
entries (EPT PML4 and EPT PDPTE):

0123456789101112⋯505152⋯63

physical address of EPT PML4 table 0 1 1 1 1 0 EPTP
physical address of EPT PDPT XWR PML4E
physical address of 1 GB page 1 XWR PDPTE

Gray fields are reserved/ignored and must be 0. The fields of R (read access), W (write access),
and X (execute access) indicate whether reads, writes, and instruction fetches are allowed from
the memory region controlled by this entry, respectively.

*** END OF EXCERPT ***

Page 6 of 12

To make it easier to read, integer literals in this page are separated with underscores. For
instance, we use 0x0000_cafe and 0x0000cafe interchangeably.
Given a virtual machine, Alyssa plans to construct an EPT to ensure that it cannot access
memory of other virtual machines or the hypervisor. More specifically, the EPT consists of
one EPT PML4 table and one EPT page-directory-pointer table (PDPT):
• the PML4 table resides at physical address 0x0800_0000; and
• the EPT PDPT resides at physical address 0x0800_1000.

Together, the EPT maps guest-physical addresses in the range [0, 0x3fff_ffff] (i.e., the first
1 GB) in the virtual machine to physical addresses [0x0001_0000_0000, 0x0001_3fff_ffff]
(i.e., the 1-GB range starting from 4 GB) in the hypervisor. Alyssa wants to grant read, write,
and execute accesses to guest-physical addresses in the range [0, 0x3fff_ffff]; accesses to
other guest-physical addresses should be denied and cause an EPT violation.
Hint: the binary representation of 0x1e is 11110.

i. (5 points) : Check all that apply: using this EPT, which of the following guest-physical
addresses will not cause an EPT violation?

∎ 0x0

∎ 0x0800_0000

∎ 0x0800_1000

◻ 0x4000_0000

◻ 0x0001_0000_0000

ii. (5 points) Check one correct answer: the value of the extended-page-table pointer (EPTP)
for this virtual machine is .

◻ 0x1e

∎ 0x0800_001e

◻ 0x0800_101e

◻ 0x4000_001e

◻ 0x0001_0000_001e

Page 7 of 12

iii. (10 points) As described in the excerpt, an EPT PML4 table is 4-KBytes in size and has
512 64-bit entries. Fill in the blanks for the first two entries of the EPT PML4 table for
the virtual machine (no need to justify your answers here).

511 0x0000_0000_0000_0000

.
2 0x0000_0000_0000_0000

1 ??
0 ??

• The value of entry 0 of the EPT PML4 table is 0x0800_1007 .

• The value of entry 1 of the EPT PML4 table is 0x0 .

Page 8 of 12

IV. (10 points) Locking
Ben Bitdiddle wants to improve the spinlock implementation used in JOS, by adding fairness
guarantees. Specifically, he implements a tick spinlock:

struct lock {
unsigned int next, now_serving;

};

void acquire(struct lock *l)
{

unsigned int ticket = l->next++;

while (l->now_serving != ticket)
;

}

void release(struct lock *l)
{

++l->now_serving;
}

He plans to use this modified lock implementation for the multithreaded hash table program from
lecture, where two threads concurrently insert keys into a hash table. While running this program
on a multicore system, he notices “5644 keys missing” in the output. Please help Ben understand
why his lock implementation fails.
Check all possible reasons:

∎ there is a race condition between acquire() and release()

∎ the CPUs have a weakmemory consistency model and reorder loads/stores

◻ the CPUs perform speculative execution and reorder loads/stores
∎ theCcompilerperformsaggressiveoptimizations asdata races areundefined in C

◻ assembly code is required to implement a lock as there is no safe way to do so in C

Page 9 of 12

V. File systems

boot
block

super
block

log
header

log
blocks

inode
blocks

free
bitmap

data
blocks

0 1 2 3 32 58 59

The disk layout of the xv6 file system is illustrated in the above figure:
• the super block is in block 1;
• the log header is in block 2 and the log is in blocks 3–31;
• inodes are in blocks 32–57;
• the bitmap of free blocks is in block 58; and
• data blocks start from block 59 to end of the disk.

To trace disk writes, Alyssa modifies iderw() in the IDE driver code (ide.c) to print the block
number of each block written.
Alyssa types in the command “echo > newfile” to create an empty file under the root directory,
and observes the following output:

$ echo > newfile
write 3
write 4
write 5
write 6
write 2
write 36
write 58
write 582
write 32
write 2

She uses ls to observe that the inode number of newfile is 32.

(a) (10 points) Match writes to their descriptions: the left side contains the last five writes ob-
served by Alyssa; for each write, choose a letter of the most appropriate description from the
right side and fill in the blank. Each letter may be used once, more than once, or not at all.

b write 36
d write 58
c write 582
a write 32
e write 2

a. update the root directory’s inode
b. update newfile’s inode
c. write the root directory’s newly allocated data block
d. allocate a data block for the root directory in the free bitmap
e. delete the transaction from the log

Page 10 of 12

(b) (5 points) Alyssa is not happy that creating an empty file currently requires 10 writes. She
wants to improve the performance of the xv6 file system by reducing the number of writes.
Specifically, she doesn’t like the use of the log and decides to change the file system to skip
writes to the log (i.e., blocks 2–31) altogether. After the change, creating an empty file requires
only the following 4 writes (rather than 10 writes):
a . update the root directory’s inode
b. update newfile’s inode
c. write the root directory’s newly allocated data block
d. allocate a data block for the root directory in the free bitmap

Your job is to help her order the four writes in a way such that no matter when the machine
crashes between the writes, the file system is never corrupted (but it can “leak” data blocks
and inodes by rendering them unusable). Assume each write is atomic and the disk does not
reorder writes.
Give one safe order of the four writes using their letters (no need to justify your answers).

first: → → → last.

Solution: A safe order should satistfy b → c, c → a, and d → a. Therefore, any of the
following three orders is safe:

• b→ c→ d→ a
• b→ d→ c→ a
• d→ b→ c→ a

Page 11 of 12

VI. CSE 451
We would like to hear your opinions. Any answer, except no answer, will receive full credit.

(a) (3 points) What was your favorite topic in CSE 451?

Solution: traps/syscalls (12), virtualmemory (11), processmanagement (8), file systems (7)

(b) (3 points) Which topic you would like to see removed for next year?

Solution: booting (5), virtual machines (4), verification (3), papers (3), concurrency (3)

(c) (3 points) Are there any topics you would like to see added to the class?

Solution: networking (14), recent research (4), more virtualization (4), more I/O (4)

(d) (1 point) Circle true or false for the statement.
True False The Meltdown exploits “do not have the potential to corrupt, modify or

delete data.”

End — Enjoy the break!

Page 12 of 12

