
CSE 451 Fall 2018
Final

You have 110 minutes to answer the questions in this exam. In order to receive credit you must answer
the question as precisely as possible.

Some questions are harder than others, and some questions earn more points than others. You may
want to skim them all through first, and attack them in the order that allows you to make the most
progress.

If you find a question ambiguous, be sure to write down any assumptions you make. Be neat and
legible. If we can’t understand your answer, we can’t give you credit!

Write your name and email address on this cover sheet.

This is an open book, open notes, open laptop exam.

NO INTERNET ACCESS OR OTHER COMMUNICATION.

Name:

Email:

Question: I II III IV V VI Total

Points: 20 20 10 20 20 10 100

Bonus Points: 0 0 0 5 0 0 5

Score:

I. (20 points) Warm-up

Circle true or false for each statement (no need to justify your answers here).

True False Both xv6 and JOS enable virtual memory for user applications and disable
virtual memory in the kernel.

True False The xv6 kernel can take new timer interruptswhile handling a timer interrupt,
and the JOS kernel handles each timer interrupt to completion.

True False When JOS runs onmultiple x86CPUs, atmost oneCPU can be in the privilege
level of ring 0 (i.e., kernel mode).

True False Dune provides applications with access to privileged CPU features, but incurs
a performance penalty, such as slower garbage collection.

True False One reason that IX outperforms Linux is that its network stack is based on
lwIP, which is more optimized than the Linux TCP/IP stack.

Page 2 of 12

II. (20 points) Memory addresses

Check either “physical address” or “virtual address” for underlined values from JOS (no need to
justify your answers here).

The kernel pointer pages pointing to an array of PageInfo structures:

◻ physical address ◻ virtual address

The top of the first CPU’s kernel stack KSTACKTOP (0xf0000000):

◻ physical address ◻ virtual address

A memory range starting from 0xf0000000 in an E820 memory map:

◻ physical address ◻ virtual address

The value of tf_eip in struct Trapframe passed into the trap() function in the kernel:

◻ physical address ◻ virtual address

The address of the Interrupt Descriptor Table (IDT) in a Dune process (VMX non-root, ring 0):

◻ physical address ◻ virtual address

Page 3 of 12

III. User space

(a) (5 points) Ben Bitdiddle tries to run the following user program on xv6.

#include "types.h"
#include "stat.h"
#include "user.h"

int main(int argc, char *argv[])
{

char *message = "hello";
int pid;

pid = fork();
if (pid > 0) {

/* parent process */
message = "world";
close(1);

}

write(1, message, 5);

if (pid > 0) {
/* parent process */
wait();

}

exit();
}

Assume that file descriptor 1 is connected to the terminal when the program starts, and that
write() does not output anything when called on an invalid file descriptor. Which of the
following outputs may Ben observe? Check all that apply.

◻ “hello”
◻ “hellohello”
◻ “helloworld”
◻ “world”
◻ “worldhello”
◻ “worldworld”

Page 4 of 12

(b) (5 points) After seeing the lab X demos, Ben wants to try fine-grained locking. Recall the
multi-threaded hash table from lecture: initially, some keys were missing after being inserted
into the hash table; this was caused by a race condition between two threads executing put().
To achieve fine-grained locking, Ben now adds acquire() and release() calls with a global
lock to insert(), as follows:

struct entry {
int key;
int value;
struct entry *next;

};
struct entry *table[NBUCKET];
struct lock lock;
...

void insert(int key, int value, struct entry **p, struct entry *n)
{

struct entry *e;

e = malloc(sizeof(struct entry)); /* (1) */
e->key = key; /* (2) */
e->value = value; /* (3) */
e->next = n; /* (4) */

acquire(&lock);
p = e; / (5) */
release(&lock);

}

void put(int key, int value)
{

int i = key % NBUCKET;
insert(key, value, &table[i], table[i]);

}

Ben observes that some keys still are missing. Which of the lines marked with (1)–(5)might
have caused data races? Check all that apply.

◻ (1)

◻ (2)

◻ (3)

◻ (4)

◻ (5)

Page 5 of 12

IV. Page tables

Alyssa P. Hacker plans to port JOS to 32-bit RISC-V, an open-source instruction set architecture
also known as RV32. The following is a slightly modified excerpt from the RISC-V Instruction
Set Manual. Your job is to help Alyssa based on your experience with JOS. You may want to read
the questions before reading the excerpt.

RISC-V defines the following privilege levels: machine, supervisor, and user. Machine-mode can
be used to manage secure execution environments on RISC-V. User-mode and supervisor-mode
are intended for conventional application and operating system usage respectively.

On RV32, the 32-bit Supervisor Address Translation and Protection (satp) register controls ad-
dress translation and protection, formatted as shown below. The satp register holds the physical
page number (PPN) of the root page table, i.e., its physical address divided by 4 KiB; an address
space identifier (ASID), which is reserved and must be zero; and the top bit, which must be 1.
Storing a PPN in satp supports a physical address space larger than 4 GiB for RV32.

021223031

1 ASID PPN

1 9 22
RV32 provides a paged virtual-memory scheme called Sv32. Sv32 supports a 32-bit virtual ad-
dress space, divided into 4KiB pages. An Sv32 virtual address is partitioned into a virtual page
number (VPN) and page offset, as shown below:

01112212231

VPN[1] VPN[0] page offset

10 10 12
When Sv32 is used, virtual addresses are translated into physical addresses via a two-level page
table. The 20-bit VPN is translated into a 22-bit physical page number (PPN), while the 12-bit
page offset is untranslated. A resulting physical address is shown below:

01112212233

PPN[1] PPN[0] page offset

12 10 12
Sv32 page tables consist of 210 page-table entries (PTEs), each of four bytes. A page table is exactly
the size of a page and must always be aligned to a page boundary. The physical page number of
the root page table is stored in the satp register.

The PTE format is as follows. The V bit indicates whether the PTE is valid; if it is 0, all other bits
in the PTE are don’t-cares and may be used freely by software. The permission bits, R, W, and
X, indicate whether the page is readable, writable, and executable, respectively. When all three are
zero, the PTE is a pointer to the next level of the page table; otherwise, it is a leaf PTE. Writable
pages must also be marked readable; the contrary combinations are reserved for future use.

012345678910192031

PPN[1] PPN[0] RSW D A 0 U X W R V

12 10 2 1 1 1 1 1 1 1 1

Page 6 of 12

X W R Meaning

0 0 0 Pointer to next level of page table
0 0 1 Read-only page
0 1 0 Reserved for future use
0 1 1 Read-write page
1 0 0 Execute-only page
1 0 1 Read-execute page
1 1 0 Reserved for future use
1 1 1 Read-write-execute page

The above table summarizes the encoding of the permission bits.

• Attempting to fetch an instruction from a page that does not have execute permissions raises
a fetch page-fault exception. Attempting to execute a load instruction whose effective address
lies within a page without read permissions raises a load page-fault exception. Attempting to
execute a store instruction whose effective address lies within a page without write permissions
raises a store page-fault exception.

• The U bit indicates whether the page is accessible to user mode. User-mode software may only
access the page when U=1. The supervisor may not execute code on pages with U=1.

• The RSW field is reserved for use by supervisor software.
• Each leaf PTE contains an accessed (A) and dirty (D) bit. When a virtual page is accessed and
the A bit is clear, or is written and the D bit is clear, a page-fault exception is raised.

• For non-leaf PTEs, the D, A, and U bits are reserved for future use and must be cleared by
software for forward compatibility.

To summarize, a virtual address va is translated into a physical address pa as follows:

1. Let a be satp.ppn × PAGESIZE, and let i = LEVELS − 1. (For Sv32, PAGESIZE = 212 and
LEVELS = 2.)

2. Let pte be the value of the PTE at address a + va.vpn[i] × PTESIZE. (For Sv32, PTESIZE = 4.)
3. If pte.v = 0, or if pte.r = 0 and pte.w = 1, stop and raise a page-fault exception.
4. Otherwise, the PTE is valid. If pte.r = 1 or pte.x = 1, go to step 5. Otherwise, this PTE is a

pointer to the next level of the page table. Let i = i − 1. If i < 0, stop and raise a page-fault
exception. Otherwise, let a = pte.ppn × PAGESIZE and go to step 2.

5. If i > 0, this is an unsupported superpage; stop and raise a page-fault exception.
6. A leaf PTE has been found. Determine if the requested memory access is allowed by the pte.r,

pte.w, pte.x, and pte.u bits. If not, stop and raise a page-fault exception.
7. If pte.a = 0, or if the memory access is a store and pte.d = 0, raise a page-fault exception.
8. The translation is successful. The translated physical address is given as follows:

• pa.pgoff = va.pgoff .
• pa.ppn[LEVELS − 1 ∶ i] = pte.ppn[LEVELS − 1 ∶ i].

*** END OF EXCERPT ***

Page 7 of 12

To make it easier to read, integer literals in this question are separated with underscores. For
instance, we use 0x0000_cafe and 0x0000cafe interchangeably.

(a) (5 points) Check one correct answer. The RV32 architecture supports a physical address
space of up to bits.

◻ 30
◻ 31
◻ 32
◻ 33
◻ 34
◻ none of the above

(b) (5 points) Check all that apply. Suppose executing a store instruction in user mode succeeds
(i.e., no page faults). In the leaf PTE corresponding to the virtual address the store instruction
attempts to write, which of the following fields must be 1 during the execution of the store
instruction?

◻ V (valid)
◻ R (readable)
◻ W (writable)
◻ X (executable)
◻ A (accessed)
◻ D (dirty)
◻ none of the above

Page 8 of 12

(c) Recall that on x86 the CR3 register points to a page-directory page, which in turn points to
the next level. Alyssa sets up a similar two-level page table on RV32: the satp register points
to a non-leaf page-table page, which in turn points to a leaf page-table page.
Specifically, the non-leaf page-table page resides at physical address 0x8000_1000, and the leaf
page-table page resides at physical address 0x8000_2000. This page tablemaps the 4MiB range
of virtual addresses [0x0, 0x003f_ffff] to physical addresses [0x8100_0000, 0x813f_ffff],
with R and W permissions in supervisor-mode only.
Below is the content of the non-leaf page-table page:

1023 0x0000_0000

.
1 0x0000_0000

0 ??

Hint: the binary representation of 0x8 is 1000.
i. (5 points) Check one correct answer. The value of the satp register is .

◻ 0x8000_1000

◻ 0x1008_0000

◻ 0x1008_0001

◻ 0x8008_0001

◻ none of the above

ii. (5 points) Check all that apply. For entry 0 of the non-leaf page-table page, which of the
following fields must be 1?

◻ V (valid)
◻ R (readable)
◻ W (writable)
◻ X (executable)
◻ A (accessed)
◻ D (dirty)
◻ none of the above

iii. (5 points (bonus)) Fill in the blank. Assume the RSW field is 0. The value of entry 0 of
the non-leaf page-table page is 0x .

Page 9 of 12

V. File systems

boot
block

super
block

log
header

log
blocks

inode
blocks

free
bitmap

data
blocks

0 1 2 3 32 58 59

The disk layout of the xv6 file system is illustrated in the above figure:

• the super block is in block 1;
• the log header is in block 2 and the log is in blocks 3–31;
• inodes are in blocks 32–57;
• the bitmap of free blocks is in block 58; and
• data blocks start from block 59 to end of the disk.

A hard link is a directory entry that associates a name with an inode. Initially, the README file
under the root directory has one hard link. Alyssa types in the command “ln README ALIAS” to
create another hard link ALIAS to the README file. This gives the file two hard links (i.e., README and
ALIAS), in other words, two directory entries to the same inode. The nlink field in the inode tracks
the number of hard links to this inode; in this case, nlink changes from 1 to 2 after running ln.

To trace disk writes, Alyssa modifies iderw() in the IDE driver code (ide.c) to print the block
number of each block written and observes the following output:

$ ln README ALIAS
write 3
write 4
write 2
write 32
write 59
write 2

Using ls, Alyssa observes the inode number of the root directory is 1 and that of README (ALIAS) is 2.

(a) (15 points) Match writes to their descriptions: the left side contains the last three writes
observed by Alyssa; for each write, choose the letter of the most appropriate description from
the right side and fill in the blank. Each letter may be used once, more than once, or not at all.

write 32
write 59
write 2

a. complete the transaction in the log
b. erase the transaction from the log
c. update the root directory’s inode
d. update README’s inode
e. write the root directory’s data block
f . write README’s data block

Page 10 of 12

(b) (5 points) Alyssa optimizes the xv6 file system by skipping writes to the log (i.e., blocks 2–31)
altogether. On the optimized file system, invoking the ln command to create a hard link ALIAS
to README (from the original disk state) incurs only the following 2 writes (instead of 6 writes):

$ ln README ALIAS
write 32
write 59

Assume each write is atomic and the disk may cache and reorder writes. If the power suddenly
goes off during the execution of ln on the optimized file system, which of the following states
may Alyssa observe on disk? Check all that apply.

◻ ALIAS exists and the README file’s nlink is 1
◻ ALIAS exists and the README file’s nlink is 2
◻ ALIAS does not exist and the README file’s nlink is 1
◻ ALIAS does not exist and the README file’s nlink is 2
◻ none of the above

Page 11 of 12

VI. CSE 451

We would like to hear your opinions. Any answer, except no answer, will receive full credit.

(a) (3 points) What is the most important thing you would like to see fixed about CSE 451?

(b) (3 points) Which paper you would like to see removed for next year?

(c) (3 points) Are there any topics you would like to see added to the class?

(d) (1 point) Check one: which of the following is most effective for debugging JOS?

◻ running gdb
◻ inserting cprintfs
◻ discussing with others
◻ none of the above

End — Enjoy the break!

Page 12 of 12

