CSE 451.: Op_rﬁng Systems

Simplethreads

We give you:
* Skeleton functions for thread interface
* Machine-specific code (x86, i386)

Support for creating new stacks
Support for saving regs/switching stacks

* A queue data structure (why?)

* Very simple test programs
You should write more, and include them in the turnin

4/19/12

Simplethreads code structure

test/*.c Web server Other apps

(web/sioux.c) /

include/sthread.h

You write this ——

lib/sthr¢ad_user.h

lib/sthread_queue.c lib/sthr¢ad_ctx.c

[stveas swicns |

sthread_switch_i386.h
4/19/12 sthread_switch_powerpc.h .

lib/sthread _preempt.c

Pthreads

Pthreads (POSIX threads) is a preemptive,
kernel-level thread library

Simplethreads is similar to Pthreads

Project 2: compare your implementation
against Pthreads
* ./configure --with-pthreads

4/19/12

Thread operations

What functions do we need for a userspace
thread library?

4/19/12

Simplethreads API

\eNe BNIfEaiaeziel T I0LE ()

Initialize the whole system
sthread £t sFhineacleia =t N SRiiNea- sl fuine,
volid *arg)

Create a new thread and make it runnable
void sthread yield()

Give up the CPU

vold sthread ecalsEaehieis st

Exit current thread
vold* sthread joSniEEnsihas (SR

Wait for specified thread to exit

4/19/12

Simplethreads internals

Structure of the TCB:

st ructaieithNac =le i
sthread ctx t *saved ctx;
/**
* Add your fields to the thread
* data structure here.

i)/
e

4/19/12

Sample multithreaded program

(this slide and next — see test-create.c)

volid *threadisischaGonte i baoi
1f (arg) {
printf (*in thread start, arg = 3p\n”,
arg) ;

}

return 0;

4/19/12

Sample multithreaded program

int main(int argc, char *argv[]) {

sthread init();
for (i =0k S =E S o

1f (shrccldiiciac e gQulivaccldiiciisoitte,
(void *)&1) == NULL) {

printf ("sthread create failed\n");
SolE (L) ¢

}

}
// needs to be called multiple times

sthread yareikelig R
printf ("back in main\n") ;

return 0;

4/19/12

Managing contexis

(Provided for you in project 2)

Thread context = thread stack + stack
pointer

sthread new ctx(func to run)

creates a new thread context that can be switched to
sthread free ctx(some old ctx)

Deletes the supplied context
sthread switch (oldctx, newctx)

Puts current context into oldctx
Takes newctx and makes it current

4/19/12

10

How sthread switch works

Xsthread switch:
(push all regs)
movqg %rsp, ($srax)
movqg %rdx, srsp
(pop all regs)

ret

Thread 1 TCB

ol

Thread 2 TCB

s [

4/19/12

Thread 1 running

Thread 2
registers

Thread 2 ready

Want to switch to thread 2... 11

Push old context

Xsthread switch:
(push all regs)
movqg %rsp, ($srax)
movqg %rdx, srsp
(pop all regs)

ret

cPU

Thread 1 TCB Thread 2 TCB

ol s [

4/19/12

Thread 2
registers

Thread 1 running Thread 2 ready

12

Save old stack pointer

Xsthread switch: Thread 1 TCB
Genbislal el eEors) S -

Thread 2 TCB

s [

movq 3rsp, (%rax)
movqg %rdx, srsp

(pop all regs)

ret

4/19/12

Thread 1 running

Thread 2
registers

Thread 2 ready

13

Change stack pointers

Xsthread switch: Thread 1 TCB Thread 2 TCB

Genbislal el eEors) i - S -

movqg %rsp, ($srax)

movq 3rdx,3rsp

(pop all regs)

ret

Thread 2
registers

Thread 1 ready Thread 2 running

14

4/19/12

Pop off new context

Xsthread switch: Thread 1 TCB Thread 2 TCB

Genbislal el eEors) i - S -

movqg %rsp, ($srax)

movqg %rdx, $rsp

(pop all regs)

ret

Thread 1 ready Thread 2 running

Thread 2 regs 15

4/19/12

Xsthread switch:

Done: return

(push all regs)

movqg %Srsp, (srax)

movqg %srdx, $rsp

(pop all regs
ret

)

= What got switched?

= RSP
= PC (how?)

= Other registers

cPU

Thread 1 TCB

ol

Thread 2 TCB

s [

rsp

Thread 2 regs

4/19/12

Thread 1 ready

Thread 2 running

16

Adjusting the PC

Thread 1 TCB Thread 2 TCB

s> [s [

= ret pops off the new
return address!

ra=0x400

ra=0x800

Thread 1 (stopped): Thread 2 (running):
sthread_switch(t1,t2); sthread_switch(t2,...);
0x400: printf(“test 17); 0x800: printf(“test 2’1)7;

4/19/12

Thread joining

With Pthreads (and Sthreads):

Master thread calls join on worker thread
Join blocks until worker thread exits.

Join returns the return value of the worker
thread.

Master ..
thread create() —————8 thread_join()| ——m
Thread = — = =

Worker [
Thread
DOWORK ——® pthread exit() |

Worker
Thread

18

The need for synchronization

Thread safety:

An application's ability to execute multiple
threads simultaneously without "clobbering"
shared data or creating "race" conditions

subA

Main Program ¢ ;;.odify(memloc 0x4450A)

|_—
Thread 1 Thread 2 Thread 3
call subA call subA call subA

memloc 0x 0A

4/19/12 19

Synchronization primitives:
mutexes

sthread mutex t sthread mutex init ()
vold sthread mutex free(sthread mutex t lock)

void sthreadimi=chaiitel-ldiidasecidintivex t lock)

When returns, thread is guaranteed to acquire lock
void sthread mutex unlock(
sthread mutex t lock)

4/19/12 20

Synchronization primitives:
condition variables

sthread cond t sthread cond init ()
vold sthread cond free(sthread cond t cond)

void sthreadicendishtemnElRildnne-idicond t cond)

Wake-up one waiting thread, if any
void sthread cond broadcast (
sthread cond t cond)

Wake-up all waiting threads, if any
vold sthread condiwetnsSEisikas=ldicond = cond,

sthread mutex t lock)
Wait for given condition variable
Returning thread is guaranteed to hold the lock

4/19/12 21

4/19/12

Things to think about

How do you create a thread?

How do you pass arguments to the thread’s start
function?

Function pointer passed to sthread _new_ctx() doesn’t
take any arguments

How do you deal with the initial (main)
thread?

How do you block a thread?

22

4/19/12

Things to think about

When and how do you reclaim resources for
a terminated thread?

Can a thread free its stack itself?
Where does sthread switch return?
Who and when should call sthread switch?

What should be in struct _sthread_mutex,
struct sthread cond?

23

sthread_preempt.h

/* Start preemption - func will be called
* every period microseconds
)
vold sthreadipncenpissemistinge
(sthread ectsasimotaTERiINcEE ey
int period);

/* Turns interrupts on (LOW) or off (HIGH)
* Returns the last state of the
* 1nterrupts

)/
int splx(int splval);

10/31/12

24

sthread_preempt.h

EREONIILE) IESET el §2€ — UgIng Clhe meleiiie
compare and exchange on the Intel x86.

Example usage:
lock il teieliey
while (atomic test and set(&lock))
| Soln
_Criticalisie it
atomic clear (&lock);

b D I R D IS . . .

/
int atomic tesi=cinicii iRl S -
vold atomic cleai RGNS .

10/31/12 25

10/31/12

What you need to do

Add a call to sthread preemption_init() as
the last line in your sthread_user_init()
function

* sthread _preemption_init() takes a pointer to a
function that will be called on each timer
interrupt

This function should cause thread scheduler to switch
to a different thread!

26

10/31/12

What you need to do

Add synchronization to critical sections in
thread management routines

* Think: what would happen if the code was
interrupted at this point?
Would it resume later with no problems?
Could the interrupting code mess with any variables
that this code is currently using?
* Don’t have to worry about simplethreads code
that you didn’t write (i.e. sthread_switch):
already done for you

27

10/31/12

What you need to do

Before doing a context switch, interrupts
should be disabled to avoid preemption.
How can they be reenabled after the switch?

* Hint: Think of the possible execution paths

28

Interrupt disabling

Non-thread-safe

/* returns next thread
* on the ready queue */

sthread t
sthread userSnEcpasig

sthread t next;

next = sthreadicceiEie
(ready 4qd);
1f (next == NULL)
ex1t (0);

return next;

}

10/31/12

Thread-safe

sthread t
stliFeee Useh b aol ()R]

sthread t next;
int old = splx(HIGH);

IEESaEE isnlecld dequeue
(ready q)
splx (old);
1f (next == NULL)
ex1t (0) ;

return next;

e
4

AL

10/31/12

Interrupt disabling

Why do we call

splx (old) after
dequeuing instead of
just splx (LOW) ?

Thread-safe

sthread t
stliFeee Useh b aol ()R]

sthread t next;
int old = splx(HIGH);

IEESaEE isnlecld dequeue
(ready_q);
splx (old);
1f (next == NULL)
ex1t (0) ;

return next;

30

Atomic locking

Sowhatisatomic test and set ()
for?

* Primarily to implement higher-level
synchronization primitives (mutexes, CVs)

One way to think about preemption-safe
thread library:

* Disable/enable interrupts in “library” context
* Use atomic locking in “application” context

10/31/12 31

Race conditions and testing

How can you test your preemption code?

How can you know that you’ve found all of
the critical sections?

10/31/12

32

10/31/12

Part 5: report

Covers all parts of project 2

Discuss your design decisions. In detail.
PLEASE!

33

