CSE 451: Operating Systems
Winter 2017

Module 2
Architectural Support for
Operating Systems

Mark ZbikowsKi

476 Allen Center

© 2013 Gribble, Lazowska, Levy, Zahorjan

Even coarse architectural trends
Impact tremendously the design of systems

* Processing power
— doubling every 18 months
— 60% improvement each year
— factor of 100 every decade

— 1980: 1 MHz Apple lI+ = $2,000
(~$5,000 today)

. 1980 also 1 MIPS VAX-11/780 =
$120,000 (~$300,000 today)

— 2006: 3.0GHz Pentium D = $800
— 2013: 2.7GHz Quad Core = $369
— 2017: 2.66GHz Quad Core = $45

13 Gribble, Lazowska, Levy, Zahorjan

IRAIRTMTAATRTRAE QRN AT
T e T

70 | TLATALSAATIAANIARONE | QOO BN
S/ UM i | SN

Power Consumption

40

Pentium 4
35 -

PentiumM Core
_-==.. Duo

'/ Dothano\\\(Yon%h]
N ¢ Banias /"

0 2 4 6 8
Scalar Performance

Figure 2: Normalized Power versus Normalized
Scalar Performance for Multiple Generations of Intel
Microprocessors

http://www.intel.com/pressroom/kits/core2duo/pdf/epi-trends-final2.pdf

© 2013 Gribble, Lazowska, Levy, Zahorjan

Primary Memory / Disk Capacity

Areal Density of Magnetic HDD and DRAM

6
10 _
3 100% CGR
1 05 B Travelstar 80GN
= Travelstar 40GN >
= Travelstar 30GN Ultrastar 146Z10
af 60% CGR e rastar .0
10 Microdrive Il Qs ™ 8G
I; Ultrastar - * 4G
o 36ZXb -
= 3f Ultrastar 18XP PRI
o 10 =
c C
i) : 25% CGR Ultrastar XP 256M
= 10 L it s 40% CGR
= 3
= 1F
,é" 10 E .~
‘g C /
Q 1 I 25% = 2X per 3 years
9 o 40 2
s S —
b 10 e [S
< 3 100 1
10 - | | 1 | | | [|
§ 1970 1980 1990 2000 2010
§ DRAM projections aftsr 2001 are based on Year
5 Industry capacities and constant chip area Ed Grochowski
4
<

San Jose Research Center @Hitachi Global Storage Technologies

© 2013 Gribble, Lazowska, Levy, Zahorjan

* Primary memory cost
— 1972: 1MB = $1,000,000
— 1982: 512KW (~ 1.5Mb) = $50,000

— 2017: 64GB = $379(!")

© 2013 Gribble, Lazowska, Levy, Zahorjan

« Disk cost:
— Only a few years ago, we purchased disks by the megabyte
(and it hurt!)

— Today, 1 GB (a billion bytes) costs§4\$0.50 from
Amazon (except you have to buy in increﬁ»Qnts of 40 80

GB) AN AN

« =>1 TB costs $1K $500 , 1 PB costs $1M $500K

© 2013 Gribble, Lazowska, Levy, Zahorjan

Aside: Where does it all go?
— Facetiously: “What Gordon giveth, Bill taketh away”

— Realistically: our expectations for what the system will do
increase relentlessly
* e.g., GUI
— “Software is like a gas — it expands to fill the available
space” — Nathan Myhrvold (1960-)

03M3/86 - 01/3197 Date: 02M0/97 Monthly Prices

Transistors Per Die $120
Microsoft Stock Price
6000000 T 100 ,
5000000 + $80
4000000 + (/
$60
3000000 +
$40
2000000 +
1000000 + 320
0 +—24664—nG0BO ¥ t t i $0 : .
1970 1975 1980 1985 1990 1995 01101185 01/01/30 010135

© 2013 Gribble, Lazowska, Levy, Zahorjan 7

Module Bandwidth (GB/S)

25.6
24.0
224
20.8
19.2
17.6
16.0
14.4
12.8
11.2
9.6
8.0
6.4
4.8
3.2
1.6

Primary Memory Bandwidth

@ Beyond DDR3

7/

12133 MHz

/3200 M:Hz

/'2667 MHz

800 MHz
1667 MHz

B
533 MHz .

ADOR 1

MHz
H !

1333 MKz
266 MHz

20012002 2003 /2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

© 2013 Gribble, Lazowska, Levy, Zahorjan

>

Optical bandwidth today
— Doubling every 9 months
— 150% improvement each year
— Factor of 10,000 every decade
— 10x as fast as disk capacity!
— 100x as fast as processor performance!!

What are some of the implications of these trends?

— Just one example: We have always designed systems so
that they “spend” processing power in order to save “scarce”
storage and bandwidth!

© 2013 Gribble, Lazowska, Levy, Zahorjan 9

Storage Latency:
How Far Away is the Data?

Andromeda
10 9 Tape /Optical 2,000 Years
Robot
100 Disk 2 Years
1.5h
100 Memory J

10 On Board Cache
2 On Chip Cache

1 Registers

© 2004 Jim Gray, Microsoft Corporation

A Current Trend: Solid State Disks

90
80
70

cents / MByte

50
40
30
20
10

0 . & &

2004 2005 2006 2007 2008 2009

-—&—HDD 0.139 0.111 0.091 0.077 0.06 0.04

-e—D.SSD 77 37 213 143 82 53

—~e—~F.SSD 347 186 96 51 26 1.2
Year

1800
1600
1400
1200
1000

MBytes per sec

400
200

1990 1994 1998 E.;;'V L.g;" 2000 2004 2005 2007 2008

~o—MBps 0.064 0256 1.2 7 18 34 68 200 640 1600
Year

Figure B: HDD and SSD Storage Price Trend (2004-2009), cents / MByte
Source: Web-Feet Research

Figure C: 3.5-inch Flash-SSD Sustained Random Read/Write Rates Trend

http://www.embeddedstar.com/articles/2005/2/article20050207-4. html

© 2013 Gribble, Lazowska, Levy, Zahorjan 11

Lower-level architecture affects the OS
even more dramatically

 The operating system supports sharing and
protection

— multiple applications can run concurrently, sharing resources

— a buggy or malicious application can’t nail other applications
or the system

 There are many approaches to achieving this

« The architecture determines which approaches are
viable (reasonably efficient, or even possible)
— includes instruction set (synchronization, I/O, ...)
— also hardware components like MMU or DMA controllers

© 2013 Gribble, Lazowska, Levy, Zahorjan 12

Architectural support can vastly simplify (or
complicate!) OS tasks

— e.g.: early PC operating systems (DOS, MacOS) lacked
support for virtual memory, in part because at that time PCs
lacked necessary hardware support

» Apollo workstation used two CPUs as a bandaid for non-
restartable instructions!

— Until very recently, Intel-based PCs still lacked support for
64-bit addressing (which has been available for a decade on
other platforms: MIPS, Alpha, IBM, etc...)

« Changed driven by AMD’s 64-bit architecture

© 2013 Gribble, Lazowska, Levy, Zahorjan 13

Architectural features affecting OS’s

« These features were built primarily to support OS’s:
— timer (clock) operation
— synchronization instructions (e.g., atomic test-and-set)
— memory protection
— 1/O control operations
— interrupts and exceptions
— protected modes of execution (kernel vs. user)
— privileged instructions
— system calls (and software interrupts)

— virtualization architectures

* Intel: http://www.intel.com/technology/itj/2006/v10i3/1-
hardware/7-architecture-usage.htm

« AMD: http://sites.amd.com/us/business/it-solutions/usage-
models/virtualization/Pages/amd-v.aspx

© 2013 Gribble, Lazowska, Levy, Zahorjan

Privileged instructions

« some instructions are restricted to the OS
— known as privileged instructions

* e.g., only the OS can:

— directly access /O devices (disks, network cards)
* why?

— manipulate memory state management
« page table pointers, TLB loads, etc.
* why?

— manipulate special ‘mode bits’
* interrupt priority level
« why?

© 2013 Gribble, Lazowska, Levy, Zahorjan

15

OS protection

« So how does the processor know if a privileged
instruction should be executed?

— the architecture must support at least two modes of
operation: kernel mode and user mode

* VAX, x86 support 4 protection modes
— mode is set by status bit in a protected processor register
* user programs execute in user mode
» OS executes in kernel (privileged) mode (OS == kernel)
* Privileged instructions can only be executed in kernel
(privileged) mode
— what happens if code running in user mode attempts to
execute a privileged instruction?

© 2013 Gribble, Lazowska, Levy, Zahorjan 16

Crossing protection boundaries

* So how do user programs do something privileged?

— e.g., how can you write to a disk if you can’t execute an 1/O
instructions?

« User programs must call an OS procedure — that is,
get the OS to do it for them

— OS defines a set of system calls
— User-mode program executes system call instruction

« Syscall instruction
— Like a protected procedure call

© 2013 Gribble, Lazowska, Levy, Zahorjan

17

* The syscall instruction atomically:
— Saves the current PC

— Sets the execution mode to privileged
— Sets the PC to a handler address

« With that, it's a lot like a local procedure call

— Caller puts arguments in a place callee expects (registers or
stack)

* One of the args is a syscall number, indicating which OS
function to invoke

— Callee (OS) saves caller’s state (registers, other control
state) so it can use the CPU

— OS function code runs
* OS must verify caller's arguments (e.g., pointers)

— OS returns using a special instruction

» Automatically sets PC to return address and sets execution
mode to user

© 2013 Gribble, Lazowska, Levy, Zahorjan 18

A kernel crossing illustrated

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

Save user PC

PC = trap handler address
Enter kernel mode

user mode

kernel mode v
trap handler

PC = saved PC

Enter user mode
Save app state

Verify syscall number
Find sys_read() handler in vector table

v

sys_read() kernel routine

Verify args

Initiate read
Choose next process to run
Setup return values
v Restore app state

ERET instruction
© 2013 Gribble, Lazowska, Levy, Zahorjan 19

System call issues

What would be wrong if a syscall worked like a

regular subroutine call, with the caller specifying the
next PC?

What would happen if kernel didn’t save state?
Why must the kernel verify arguments?

How can you reference kernel objects as arguments
to or results from system calls?

© 2013 Gribble, Lazowska, Levy, Zahorjan 20

Exception Handling and Protection

« All entries to the OS occur via the mechanism just
shown

— Acquiring privileged mode and branching to the trap handler
are inseparable

* Terminology:

— Interrupt: asynchronous; caused by an external device

— Exception: synchronous; unexpected problem with
instruction

— Trap: synchronous; intended transition to OS due to an
instruction
* Privileged instructions and resources are the basis
for most everything: memory protection, protected
/O, limiting user resource consumption, ...

© 2013 Gribble, Lazowska, Levy, Zahorjan 21

Memory protection

* OS must protect user programs from each other
— maliciousness, ineptitude

« OS must also protect itself from user programs
— integrity and security
— what about protecting user programs from OS?

« Simplest scheme: base and limit registers
— are these protected?

Prog A

Prog B

Prog C

T base reg base and limit registers
1 limitreg are loaded by OS before

starting program

© 2013 Gribble, Lazowska, Levy, Zahorjan

22

More sophisticated memory protection

e coming later in the course

* paging, segmentation, virtual memory
— page tables, page table pointers
— translation lookaside buffers (TLBSs)
— page fault handling

© 2013 Gribble, Lazowska, Levy, Zahorjan

23

/O control

Issues:

— how does the OS start an I/O?
» special I/O instructions
* memory-mapped I/O

— how does the OS notice an I/O has finished?
 polling
 Interrupts

— how does the OS exchange data with an I/O device?
* Programmed I/O (PIO)
» Direct Memory Access (DMA)

© 2013 Gribble, Lazowska, Levy, Zahorjan

24

Asynchronous |/O

 Interrupts are the basis for asynchronous |/O

device performs an operation asynchronously to CPU
device sends an interrupt signal on bus when done

in memory, a vector table contains list of addresses of kernel

routines to handle various interrupt types
» who populates the vector table, and when?

CPU switches to address indicated by vector index specified

by interrupt signal

« What's the advantage of asynchronous 1/0?

© 2013 Gribble, Lazowska, Levy, Zahorjan

25

Timers

« How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
— use a hardware timer that generates a periodic interrupt

— before it transfers to a user program, the OS loads the timer
with a time to interrupt
+ “quantum” — how big should it be set?

— when timer fires, an interrupt transfers control back to OS
« at which point OS must decide which program to schedule next
 very interesting policy question: we’ll dedicate a class to it
« Should access to the timer be privileged?

— for reading or for writing?

© 2013 Gribble, Lazowska, Levy, Zahorjan 26

Synchronization

* Interrupts cause a wrinkle:

— may occur any time, causing code to execute that interferes
with code that was interrupted

— OS must be able to synchronize concurrent processes

« Synchronization:

— guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically

— one method: turn off interrupts before the sequence, execute
it, then re-enable interrupts
« architecture must support disabling interrupts
— Privileged???
— another method: have special complex atomic instructions
* read-modify-write
» test-and-set
» |oad-linked store-conditional

© 2013 Gribble, Lazowska, Levy, Zahorjan 27

“Concurrent programming”

« Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”

— modern “event-oriented” application programming is a
middle ground

— And in a multi-core world, more and more apps have internal
concurrency

* Arises from the architecture

— Can be sugar-coated, but cannot be totally abstracted away

* Huge intellectual challenge

— Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming

© 2013 Gribble, Lazowska, Levy, Zahorjan 28

Architectures are still evolving

New features are still being introduced to meet modern demands
— Support for virtual machine monitors
— Hardware transaction support (to simplify parallel programming)
— Support for security (encryption, trusted modes)
— Increasingly sophisticated video / graphics
— Other stuff that hasn’t been invented yet...

In current technology transistors are free — CPU makers are
looking for new ways to use transistors to make their chips more
desirable

Intel’s big challenge: finding applications that require new
hardware support, so that you will want to upgrade to a new
computer to run them

© 2013 Gribble, Lazowska, Levy, Zahorjan

29

Some questions

Why wouldn’t you want a user program to be able to
access an |/O device (e.g., the disk) directly?

OK, so what keeps this from happening? What
prevents user programs from directly accessing the
disk?

So, how does a user program cause disk I/O to
occur?

What prevents a user program from scribbling on the
memory of another user program?

What prevents a user program from scribbling on the
memory of the operating system?

What prevents a user program from running away
with the CPU?

© 2013 Gribble, Lazowska, Levy, Zahorjan 30

