

Midterm Review

Topic List:

● Kernel

○ Kernel/User Separation

○ Privilege Mode

○ System Calls

○ Monolithic vs Microkernels

● Memory Management

○ Fragmentation

○ Segmentation

○ Virtual Memory

○ Locality

○ Paging

■ Multi-Level Page Tables

■ Page Replacement

● Processes

○ Process State

○ Process Transitions

■ Interrupts, Traps, Exceptions

○ PCB

● Threads

○ Kernel vs User Threads

○ Concurrency and Parallelism

○ TCB

Synchronization

x86 Hardware Provided Timer Interrupts:
int splx(LOW)

Turns interrupts on. Returns old interrupt value.
int splx(HIGH)

Turns interrupts off. Returns old interrupt value.
x86 Hardware Provided Atomic Testing:

int atomic_test_and_set(lock *l)
Returns 1 if lock is in use.
Returns 0 if lock is acquired.

void atomic_clear(lock *l)
Releases the lock.

Mutex:
lock(mutex_t lock) -

Acquire the lock, blocking if necessary.
unlock(mutex_t lock) -

Release the lock. Assumed that the calling thread owns the lock

Condition Variables:
wait(cond_t cv, mutex_t lock)

Block the calling thread until the condition has been signaled.
Atomically does the following:

1. Releases lock.
2. Add thread to the waiters for cond.
3. Sleeps thread until awoken.

signal(cond_t cv)

Signal that the condition has been met, awakening a single waiting thread.
(Though not switching to the newly awoken thread immediately.)

broadcast(cond_t cv)

Signal that the condition has been met, awakening all waiting threads.

Kernel Threads: Created and scheduled by the kernel. These are the threads being run on the CPU.
User Threads: Created by a threading library and scheduling is managed in user space.

Much faster to context switch between these as they share address space.

User Thread States + Transitions:

