
 
 

Process:  

An instance of a program being executed.  
Process->Program is similar to Object->Class 

Process Control Block  or PCB :  
Data structure containing metadata of a process.  

 
Interrupt :  

Hardware device requests service. Asynchronous.  
Examples: User Input (keyboard), Moving Mouse, I/O Device Ready 

Exception:  
Program does something unexpected. Synchronous. 
Examples: Divide by Zero, Page Fault, General Protection Fault 

Trap :  
Program requires OS assistance (System call). Synchronous.  
Examples: Fork, Read, Write 

 

 

 

 

 



JOS PCB: 

 
struct Env {  

struct Trapframe env_tf;  // Saved registers 
struct Env *env_link;   // Next free Env  
envid_t env_id;    // Unique environment identifier  
envid_t env_parent_id;   // env_id of this env's parent  
enum EnvType env_type;   // Indicates special system environments 
unsigned env_status;   // Status of the environment  
uint32_t env_runs;   // Number of times environment has run 
pde_t *env_pgdir;   // Kernel virtual address of page dir 

}; 
 
Questions : 

 
Is the kernel a process? Why or why not? 

 
When an infinite loop is being executed in a user process, why doesn’t the entire 
system freeze? 
 
Describe what happens when a user process executes the following code. 
(assume the program did not modify signal handlers in any way) 

int x = *((int *) 0); 
 

What are some additions to the JOS PCB that would be worth adding?  
(Linux PCB has over 95 fields) 
 
How is it ensured that a process can only access it’s own memory? 

 
  


