

Virtual Memory - Paging

Virtual Address:

- Used by application program
- Consists of a 16 bit segment selector + 32 bit segment offset. (x86 32 bit)
- 16 bit selector specifies ​page directory​ and are stored in specific registers

Linear Address:

- Result of virtual/ address and segment translation
- 32 bits Directory Index | Table Index | Frame Offset (2-level paging)

Physical Address:

- Calculated from linear address and paging
- Actual location in physical memory

In JOS, the Virtual Address and Linear Address are the same since page directories are
swapped during environment switches. The project 2 spec describes how this is done.

JOS Macros:
PDX(la) - Page Directory Index based on Linear Address
PTX(la) - Page Table Index based on Linear Address
PADDR(va) - Physical Address given Virtual Address
KADDR(pa) - Virtual Address given Physical Address
PTE_ADDR(pte) - Physical Address that given page table entry refers to

JOS Functions:
PageInfo * pa2page(pa)

- Returns PageInfo pointer associated with given page’s physical address
physaddr_t page2pa(*pp)

- Returns physical address of page associated with given PageInfo struct
void * page2kva(*pp)

- Returns virtual address of page associated with given PageInfo struct

Questions:

What are internal and external fragmentation?

True or False. A virtual memory system that uses paging is vulnerable to external
fragmentation. Why or why not?

What’s an advantage of doubling the page size? (4KB → 8KB)
What’s a disadvantage of doubling the page size?

What type of information does a page table entry store about a page frame? How
is this done?

What’s the benefit of having a 2-level paging system?

