CSE 451: Operating Systems

Section 10

Final exam review

Final exam review

 Disclaimer: This is not guaranteed to be everything that you need to
know for the final. This is an overview of major topics we covered in
the course.

* You are responsible for all the readings and the slides only up to what
we covered in class.

Exam Coverage

 Lectures: Modules 1 — 28
e Chapters 1 — 14 in the textbook

* Sections:
 All examples and problems gone over in section. (Not including Andriod
architecture)

* Extra Readings

Major Topics

* Kernels — Micro, Monolithic, etc

* Processes — fork, vfork, execve, clone

* User and Kernel level threads

* Scheduling, overview of scheduling algs

* Paging, caching

* Memory Management

e Race conditions and synchronization variables
* Deadlock

* File systems

Kernel land vs User land separation

» Userspace processes cannot interact directly with hardware (non-
privileged mode)

» Attempting to execute a system call instruction causes a trap to the
kernel (privileged mode), which handles the request

* Why is it necessary to have both privileged and non-privileged
mode?

* How is privileged mode enforced?
* What kind of operations require a system call?

IO from userspace

» Userspace processes interact with disks and other devices via
open (), read(),write (), and other system calls

* Multiple levels of abstraction: kernel presents file system to
userspace, and device drivers present a (mostly) unified interface to
kernel code

* What are the benefits and drawbacks of designing a system in this way?

Monolithic and microkernels

* Monolithic kernels encapsulate all aspects of functionality aside from
hardware and user programs

* Pro: Low communication cost, since everything is in the kernel’s address
space

* Cons: Millions of lines of code, continually expanding, no isolation between
modules, security

* Microkernels separate functionality into separate modules that each

expose an API

* Services as servers
 Why? How?

Memory management

* Purposes:
* Resource partitioning / sharing
* Isolation
* Usability

* Paging

* Segmentation

Virtual memory

* What happens on a virtual memory access?

* How does the TLB, multilevel page tables, segmentation faults, page
faults, and disk all work together to control memory access?

Virtual memory

virtual address

virtual page #

offset

12/5/2013

Remember that a page table can have multiple levels.

page table

physical address

— [PAGENaMEN — | page frame #

offset

physical memory

Note: Each process
has its own page table!

© 2010 Gribble, Lazowska, Levy, Zahorjan

v

10

Page replacement

* Algorithms:
 Belady, FIFO, LRU, LRU clock / NRU, random, working set...
* Local vs. global

* How/why are any of these better or worse than the others?

* What happens when paging goes wrong?
, 10-year old computers running XP?

Advanced virtual memory

* What problem does a TLB address?

* What problem do two-level page tables address?
* What's the key concept?

Advanced virtual memory

* What problem does a TLB address?

* Increases speed of virtual address translation

* What problem do two-level page tables address?
* What's the key concept?

Processes versus threads

* Processes have multiple pieces of state associated with them

* Program counter, registers, virtual memory, open file handles, mutexes,
registered signal handlers, the text and data segment of the program, and so
on

 Total isolation, mediated by the kernel

* Threads are “lightweight” versions of processes
* Which pieces of state listed above do threads not maintain individually?

Process creation

* fork () :create and initialize a new process control block
» Copy resources of current process but assign a new address space

 Callsto fork () return twice—once to parent (with pid of child process)
and once to child

 What makes this system call fast even for large processes? VIOTrk ()
Versus copy-on-write

e Difference between fork (), vfork(), cow fork(), and
clone () ?

*execC () :stop the current process and begin execution of a new

one
* Existing process image is overwritten
* No new process is created

* Is there a reason why fork () and eXecC () are separate system
calls?

Process State

* What States can a process be in?

Process State

* What States can a process be in?
* Running, Runnable, Waiting

 How does a process between the different states?

Threads

* How is a kernel thread different from a userspace thread?

» Kernel thread: managed by OS, can run on a different CPU core than parent
process

» Userspace thread: managed by process/thread library, provides concurrency
but no parallelism (can’t have two userspace threads within a process
executing instructions at the same time)

* CPU sharing
* Threads share CPU either implicitly (via preemption) or explicitly via calls to

vield ()

* What happens when a userspace thread blocks on
107?

Scheduling

* Operating systems share CPU time between processes by context-
switching between them

* In systems that support preemption, each process runs for a certain quantum
(time slice) before the OS switches contexts to another process

* Which process runs next depends on the scheduling policy

* Scheduling policies can attempt to maximize CPU utilization or
throughput or minimize response time, for example

* There are always tradeoffs between performance and fairness

Scheduling policies

* FIFO: first in first out
* SPT: shortest processing time first
* RR: round robin

* Any of these can be combined with a notion of Priority
* How to avoid starvation? Lottery is one option

* What are the benefits and drawbacks of each type of scheduling
policy?

Scheduling MLFBQ

* Queue of queues
* Priority based on top level queue depth

 Defined by:
* The number of queues

* The scheduling algorithm for each internal queue which can be different
from FIFO

* The method used to determine when to promote a process to a higher
priority queue

* The method used to determine when to demote a process to a lower priority
queue

* The method used to determine which queue a process will enter when that
process needs service

Synchronization Variables

* Locks, mutexes, semaphores, condition variables and monitors
* Mutexes

* Provide a waiting queue for threads that are waiting on a lock
* Condition Variables

* A higher level construct than mutexes. They help manage the waiting of threads by
allowing them to wait until a given condition is true

* Signal and broadcast
* Monitors

* Two main different types, Hoare and Mesa monitors.
* Provides object like abstraction to synchronization. Manages condition variables and
locks as well as provides methods for accessing shared memory.

* Should be familiar with both types:
http://en.wikipedia.org/wiki/Monitor_(synchronizaSon)

Thread management

* Queues
* Why do thread libraries make use of queues?

 Synchronization
* What are the mechanisms for protecting critical sections, how do they work,

and when should one be used over another?
* Preemption

* What is preemption and how does the process of one thread preempting
another work?

Secondary storage

* Memory forms a

e Different levels of disk abstraction:
* Sectors
* Blocks
* Files

* What factor most influences the ways that we interact with disks?

Secondary storage

* Memory forms a hierarchy

e Different levels of disk abstraction:
* Sectors
* Blocks
* Files

* What factor most influences the ways that we interact with disks?
* Latency

File systems

* What does a file system give you?
» Useful abstraction for secondary storage

* Organization of data
* Hierarchy of directories and files

* Sharing of data

File system internals

* Directories
* Directory entries

* Inodes

* Files:
* One inode per file
* Multiple directory entries (links) per file

Inode-based file system

* Sequence of steps when | run echo “some text” > /home/jay/file.txt ?
* Open file:

* Write to file:

* Close file:

Inode-based file system

* Sequence of steps when | run echo “some text” > /home/jay/file.txt ?
e Open file:
* Get inode for / -> get data block for /

* Read directory entry for / -> get inode for /homes
* Repeat... -> get data block for file.txt, check permissions

* Write to file:
* Modify data block(s) for file.txt in buffer cache
* Close file:
* Mark buffer as dirty, release to buffer cache
* Kernel flushes dirty blocks back to disk at a later time

