
CSE	451:	Operating	Systems
Section	10

Final	exam	review

Final	exam	review

• Disclaimer:	This	is	not	guaranteed	to	be	everything	that	you	need	to	
know	for	the	final.	This	is	an	overview	of	major	topics	we	covered	in	
the	course.

• You	are	responsible	for	all	the	readings	and	the	slides	only	up	to	what	
we	covered	in	class.

12/5/2013 2

Exam	Coverage

• Lectures:	Modules	1	– 28
• Chapters	1	– 14	in	the	textbook

• Sections:
• All	examples	and	problems	gone	over	in	section.	(Not	including	Andriod
architecture)	

• Extra	Readings

12/5/2013 3

Major	Topics

• Kernels	– Micro,	Monolithic,	etc
• Processes	– fork,	vfork,	execve,	clone	
• User	and	Kernel	level	threads		
• Scheduling,	overview	of	scheduling	algs
• Paging,	caching		
• Memory	Management
• Race	conditions	and	synchronization	variables	
• Deadlock
• File	systems	

12/5/2013 4

Kernel	land	vs	User	land	separation

• Userspace processes	cannot	interact	directly	with	hardware	(non-
privileged	mode)

• Attempting	to	execute	a	system	call	instruction	causes	a	trap	to	the	
kernel	(privileged	mode),	which	handles	the	request

• Why	is	it	necessary	to	have	both	privileged	and	non-privileged	
mode?

• How	is	privileged	mode	enforced?
• What	kind	of	operations	require	a	system	call?

5/2/13 5

IO	from	userspace

• Userspace processes	interact	with	disks	and	other	devices	via	
open(),	read(),	write(),	and	other	system	calls

• Multiple	levels	of	abstraction:	kernel	presents	file	system	to	
userspace,	and	device	drivers	present	a	(mostly)	unified	interface	to	
kernel	code

• What	are	the	benefits	and	drawbacks	of	designing	a	system	in	this	way?

5/2/13 6

Monolithic	and	microkernels

• Monolithic	kernels	encapsulate	all	aspects	of	functionality	aside	from	
hardware	and	user	programs

• Pro:	Low	communication	cost,	since	everything	is	in	the	kernel’s	address	
space

• Cons:	Millions	of	lines	of	code,	continually	expanding,	no	isolation	between	
modules,	security

• Microkernels	separate	functionality	into	separate	modules	that	each	
expose	an	API

• Services	as	servers
• Why?	How?

5/2/13 7

Memory	management

• Purposes:
• Resource	partitioning	/	sharing
• Isolation
• Usability

• Paging
• Segmentation

12/5/2013 8

Virtual	memory

• What	happens	on	a	virtual	memory	access?	
• How	does	the	TLB,	multilevel	page	tables,	segmentation	faults,	page	
faults,	and	disk	all	work	together	to	control	memory	access?

12/5/2013 9

Virtual	memory

12/5/2013 © 2010 Gribble, Lazowska, Levy, Zahorjan 10

page
frame 0
page
frame 1
page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset
physical address
page frame #page frame #

page table

offset
virtual address

virtual page #

Note: Each process
has its own page table!

Remember that a page table can have multiple levels.

Page	replacement

• Algorithms:
• Belady,	FIFO,	LRU,	LRU	clock	/	NRU,	random,	working	set…
• Local	vs.	global

• How/why	are	any	of	these	better	or	worse	than	the	others?
• What	happens	when	paging	goes	wrong?

• Thrashing,	10-year	old	computers	running	XP?

12/5/2013 11

Advanced	virtual	memory

• What	problem	does	a	TLB	address?

• What	problem	do	two-level	page	tables	address?
• What’s	the	key	concept?

12/5/2013 12

Advanced	virtual	memory

• What	problem	does	a	TLB	address?
• Increases	speed	of	virtual	address	translation

• What	problem	do	two-level	page	tables	address?
• What’s	the	key	concept?

• Indirection

12/5/2013 13

Processes	versus	threads

• Processes	have	multiple	pieces	of	state	associated	with	them
• Program	counter,	registers,	virtual	memory,	open	file	handles,	mutexes,	
registered	signal	handlers,	the	text	and	data	segment	of	the	program,	and	so	
on

• Total	isolation,	mediated	by	the	kernel

• Threads	are	“lightweight”	versions	of	processes
• Which	pieces	of	state	listed	above	do	threads	not	maintain	individually?

5/2/13 14

Process	creation

• fork():	create	and	initialize	a	new	process	control	block
• Copy	resources	of	current	process	but	assign	a	new	address	space
• Calls	to	fork() return	twice—once	to	parent	(with	pid of	child	process)	
and	once	to	child

• What	makes	this	system	call	fast	even	for	large	processes?	vfork()
versus	copy-on-write

• Difference	between	fork(), vfork(), cow fork(), and
clone()?

•exec():	stop	the	current	process	and	begin	execution	of	a	new	
one

• Existing	process	image	is	overwritten
• No	new	process	is	created
• Is	there	a	reason	why	fork() and	exec() are	separate	system	
calls?

5/2/13 15

Process	State

• What	States	can	a	process	be	in?

5/2/13 16

Process	State

• What	States	can	a	process	be	in?
• Running,	Runnable,	Waiting

• How	does	a	process	between	the	different	states?

5/2/13 17

Threads

• How	is	a	kernel	thread	different	from	a	userspace thread?
• Kernel	thread:	managed	by	OS,	can	run	on	a	different	CPU	core	than	parent	
process

• Userspace thread:	managed	by	process/thread	library,	provides	concurrency	
but	no	parallelism	(can’t	have	two	userspace threads	within	a	process	
executing	instructions	at	the	same	time)

• CPU	sharing
• Threads	share	CPU	either	implicitly	(via	preemption)	or	explicitly	via	calls	to	
yield()

•What	happens	when	a	userspace thread	blocks	on	
IO?

5/2/13 18

Scheduling

• Operating	systems	share	CPU	time	between	processes	by	context-
switching	between	them

• In	systems	that	support	preemption,	each	process	runs	for	a	certain	quantum	
(time	slice)	before	the	OS	switches	contexts	to	another	process

• Which	process	runs	next	depends	on	the	scheduling	policy

• Scheduling	policies	can	attempt	to	maximize	CPU	utilization or	
throughput	or	minimize	response	time,	for	example

• There	are	always	tradeoffs	between	performance	and	fairness

5/2/13 19

Scheduling	policies

• FIFO:	first	in	first	out
• SPT:	shortest	processing	time	first
• RR:	round	robin
• Any	of	these	can	be	combined	with	a	notion	of	Priority

• How	to	avoid	starvation?	Lottery	is	one	option

• What	are	the	benefits	and	drawbacks	of	each	type	of	scheduling	
policy?

5/2/13 20

Scheduling	MLFBQ

• Queue	of	queues
• Priority	based	on	top	level	queue	depth

• Defined	by:
• The	number	of	queues
• The	scheduling	algorithm	for	each	internal	queue	which	can	be	different	
from	FIFO

• The	method	used	to	determine	when	to	promote	a	process	to	a	higher	
priority	queue

• The	method	used	to	determine	when	to	demote	a	process	to	a	lower	priority	
queue

• The	method	used	to	determine	which	queue	a	process	will	enter	when	that	
process	needs	service

5/2/13 21

Synchronization	Variables	

• Locks,	mutexes,	semaphores,	condition	variables	and	monitors
• Mutexes

• Provide	a	waiting	queue	for	threads	that	are	waiting	on	a	lock
• Condition	Variables

• A	higher	level	construct	than	mutexes.	They	help	manage	the	waiting	of	threads	by	
allowing	them	to	wait	until	a	given	condition	is	true

• Signal	and	broadcast
• Monitors

• Two	main	different	types,	Hoare	and	Mesa	monitors.
• Provides	object	like	abstraction	to	synchronization.	Manages	condition	variables	and	
locks	as	well	as	provides	methods	for	accessing	shared	memory.

• Should	be	familiar	with	both	types:	
http://en.wikipedia.org/wiki/Monitor_(synchroniza$on)

12/5/2013 22

Thread	management

• Queues
• Why	do	thread	libraries	make	use	of	queues?

• Synchronization
• What	are	the	mechanisms	for	protecting	critical	sections,	how	do	they	work,	
and	when	should	one	be	used	over	another?

• Preemption
• What	is	preemption	and	how	does	the	process	of	one	thread	preempting	
another	work?

12/5/2013 23

Secondary	storage

• Memory	forms	a	hierarchy
• Different	levels	of	disk	abstraction:

• Sectors
• Blocks
• Files

• What	factor	most	influences	the	ways	that	we	interact	with	disks?

12/5/2013 24

Secondary	storage

• Memory	forms	a	hierarchy
• Different	levels	of	disk	abstraction:

• Sectors
• Blocks
• Files

• What	factor	most	influences	the	ways	that	we	interact	with	disks?
• Latency

12/5/2013 25

File	systems

• What	does	a	file	system	give	you?
• Useful	abstraction	for	secondary	storage
• Organization	of	data

• Hierarchy	of	directories	and	files
• Sharing	of	data

12/5/2013 26

File	system	internals

• Directories
• Directory	entries
• Inodes

• Files:
• One	inode	per	file
• Multiple	directory	entries	(links)	per	file

12/5/2013 27

Inode-based	file	system

• Sequence	of	steps	when	I	run	echo	“some	text”	>	/home/jay/file.txt ?
• Open	file:

• Write	to	file:

• Close	file:

12/5/2013 28

Inode-based	file	system

• Sequence	of	steps	when	I	run	echo	“some	text”	>	/home/jay/file.txt ?
• Open	file:

• Get	inode	for	/	->	get	data	block	for	/
• Read	directory	entry	for	/	->	get	inode	for	/homes
• Repeat…	->	get	data	block	for	file.txt,	check	permissions

• Write	to	file:
• Modify	data	block(s)	for	file.txt	in	buffer	cache

• Close	file:
• Mark	buffer	as	dirty,	release	to	buffer	cache
• Kernel	flushes	dirty	blocks	back	to	disk	at	a	later	time

12/5/2013 29

