
CSE 451: Operating Systems

Spring 2017

Module 20

Course Review

John Zahorjan

© 2017 Gribble, Lazowska, Levy, Zahorjan, 

Zbikowski



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Architectural Support

• Privileged instructions

– what are they?

– how does the CPU know whether to execute them?

– why do they need to be privileged?

– what do they manipulate?

• Protected memory

– what are the various ways it can be implemented?

– “protected addresses”

• System call

– what are the steps in handling?

• Interrupts, exceptions, traps

– definition of each

– what are the steps in handling each?



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

OS Structure

• What are the major components of an OS?

• How are they organized?

– what is the difference between monolithic, layered, 

microkernel OS’s?

• advantages and disadvantages?



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Memory Management

• Mechanisms for implementing memory management

– physical vs. virtual addressing

– base/limit registers

– partitioning, paging, segmentation

• Internal and external fragmentation



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Paged Virtual Memory

• Virtual address space

• Page faults

• Demand paging

– don’t try to anticipate

• Page replacement

– local, global, hybrid

• Locality

– temporal, spatial

• Working set

• Thrashing

• What is the complete set of steps for handling a page fault 

– start to finish?



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Page replacement algorithms

• Belady’s – optimal, but unrealizable

• FIFO – replace page loaded furthest in the past

• LRU – replace page referenced furthest in the past

– approximate using PTE reference bit

• LRU Clock – replace page that is “old enough”

• Second chance (two-level FIFO due to lack of 

hardware support required for LRU clock)

• Working Set – keep the working set in memory

• Page Fault Frequency – grow/shrink number of 

frames as a function of fault rate



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Multi-level page tables, TLBs

• How to reduce overhead of paging?

– how do multi-level page tables work?

– what problem does TLB solve?

– how are they managed?

• software vs. hardware managed

• Page faults

– what is one?  how is it used to implement demand paging?

– what is complete sequence of steps for translating a virtual 

address to a PA?  

• all the way from TLB access to paging in from disk

– cache organization and VM interaction

• MM tricks

– shared memory?  Mapped files?  copy-on-write?



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Processes

• What is a process?  What does it virtualize?

– differences between program, process, thread?

– what is contained in process?

• what does PCB contain?

• PCB vs. address space

– state queues?

• which states, what transitions are possible?

• when do transitions happen?

• Process manipulation

– what does fork() do?  how about exec()?

– how do shells work?

• Inter-process communication (IPC)

– “command line args,” pipes, signals, shared memory

– shells



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Threads
• What is a thread?

– why are they useful?

– what’s the address space look like?

– TCB vs. PCB

– user-level vs. kernel-level threads?

• performance implications

• functionality implications

• How does thread scheduling differ from process 

scheduling?

– what operations do threads support?

– what happens on a thread context switch? what is saved in 

TCB?

– preemptive vs. non-preemptive scheduling?

– scheduler activations



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Processor Scheduling

• Long term vs. short term

• When does scheduling happen?

– job changes state, interrupts, exceptions, job creation

• Scheduling goals?

– maximize CPU utilization

– maximize job throughput

– minimize {turnaround time | waiting time | response time}

– batch vs. interactive: what are their goals?

• What is starvation?  what causes it?

• FCFS/FIFO, SPT, SRPT, priority, RR, MLFQ, CFS 

(completely fair scheduler)



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Synchronization

• Why do we need it?

– data coordination? execution coordination?

– what are race conditions?  when do they occur?

– when are resources shared? (variables, heap objects, …)

• What is mutual exclusion?

– what is a critical section?

– what are the requirements of critical section solutions?

• mutex, progress, bounded waiting, performance

– what are mechanisms for programming critical sections?

• locks, semaphores, monitors, condition variables



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Locks

• What does it mean for acquire/release to be atomic?

• how can locks be implemented?

– spinlocks? interrupts? OS/thread-scheduler?

– test-and-set?

– limitations of locks?



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Semaphores and Monitors

• Semaphores

– basic operations:  wait vs. signal?

– difference between semaphore and lock?

– when and how do threads block on semaphores? when do 

they wake?

– bounded buffers problem

• producer/consumer

– readers/writers problem

– how is all of this implemented

• moving descriptors on and off queues

• Monitors

– the operations and their implementation



Non-blocking Synchronization

• What does it mean to be “non-blocking”?

• Why might you want it?

• Compare-and-swap semantics

• “same value” problem and solution approach

• General idea of implementation of a FIFO

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Deadlock

• static prevention, dynamic avoidance, 

detection/recovery

• tradeoffs among these

• graph reducibility

• approaches

– Hold and wait

– Resource ordering

– Banker’s algorithm

– Detect and eliminate



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Disks

• Physical (spinning) disk structure

– platters, surfaces, tracks, sectors, cylinders, arms, heads

• Disk interface

– how does OS make requests to the disk?

• Disk performance

– access time = seek + rotation + transfer

• Disk scheduling

– how does it improve performance?

– FCFS, SSTF, SCAN, C-SCAN?

• Implications of solid state drives



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Files and Directories

• What is a file
– what operations are supported?

– what characteristics do they have?

– what are file access methods?

• What is a directory
– what are they used for?

– how are they implemented?

– what is a directory entry?

• How does path name translation work?

• ACLs vs. capabilities
– matrix

– advantages and disadvantages of each



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

File system data structures

• General strategies?

– contiguous, linked, indexed?

– tradeoffs?

• What is a Unix inode?

– how are they different than directories?

– how are inodes and directories used to do path resolution, 

and find files?

• Everything about the Unix File System (UFS)



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

FS buffer cache

• What is a buffer cache?

– why do OS’s use them?

• What are differences between caching reads and 

writes?

– write-through, write-around, write-back/write-behind?

– read-ahead?



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

FFS, JFS, LFS

• What is FFS, how specifically does it improve over 

original Unix FS?

• How about JFS, what is the key problem that it 

solves, what are the basic ideas? 

– Define “failure atomicity”.

• How about LFS, what are the basic ideas, when does 

it yield an improvement, when does it not?



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

RAID

• Basic concepts of RAID

– stripe files across multiple disks to improve throughput

– compensate for decreased reliability with parity/ECC

• Software vs. hardware implementation

• Sources of improvement among RAID-0, RAID-1, 

and RAID-5

• RAID vs. backup (they are different!)



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Virtual Machine Monitors

• Basic concepts of VMM’s

• In some detail, what is the relationship between an 

application, the guest OS on which it runs, the VMM, 

and the hardware?

– How does control transfer appropriately?

– How do reconcile the fact that both the apps and the guest 

OS’s are running in user mode?

– Be able to trace the handling of a syscall

• Binary translation

• Ways in which hardware implementations have been 

evolving to improve efficiency of VMMs



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Projects

• You’re responsible for understanding all aspects of 

the projects!


