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Architectural Support

Privileged instructions

— what are they?

— how does the CPU know whether to execute them?
— why do they need to be privileged?

— what do they manipulate?

Protected memory

— what are the various ways it can be implemented?
— “protected addresses”

System call

— what are the steps in handling?

Interrupts, exceptions, traps
— definition of each
— what are the steps in handling each?
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OS Structure

 What are the major components of an OS?

 How are they organized?

— what is the difference between monolithic, layered,
microkernel OS’s?

« advantages and disadvantages?
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Memory Management

 Mechanisms for implementing memory management
— physical vs. virtual addressing
— base/limit registers
— partitioning, paging, segmentation

« |Internal and external fragmentation
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Paged Virtual Memory

Virtual address space
Page faults

Demand paging

— don'’t try to anticipate

Page replacement
— local, global, hybrid

Locality

— temporal, spatial
Working set
Thrashing

What is the complete set of steps for handling a page fault
— start to finish?
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Page replacement algorithms

Belady’s — optimal, but unrealizable
FIFO — replace page loaded furthest in the past

LRU — replace page referenced furthest in the past
— approximate using PTE reference bit

LRU Clock — replace page that is “old enough”

Second chance (two-level FIFO due to lack of
hardware support required for LRU clock)

Working Set — keep the working set in memory

Page Fault Frequency — grow/shrink number of
frames as a function of fault rate
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Multi-level page tables, TLBs

 How to reduce overhead of paging?
— how do multi-level page tables work?
— what problem does TLB solve?
— how are they managed?
» software vs. hardware managed
« Page faults
— what is one? how is it used to implement demand paging?

— what is complete sequence of steps for translating a virtual
address to a PA?

« all the way from TLB accessto paging in from disk
— cache organization and VM interaction

« MM tricks
— shared memory? Mapped files? copy-on-write?
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Processes

« What is a process? What does it virtualize?
— differences between program, process, thread?

— what is contained in process?
« what does PCB contain?
 PCB vs. address space

— state queues?
« which states, what transitions are possible?
« when do transitions happen?

* Process manipulation

— what does fork() do? how about exec()?
— how do shells work?

 |Inter-process communication (IPC)
— “command line args,” pipes, signals, shared memory
— shells
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Threads

e What is a thread?

— why are they useful?
— what's the address space look like?
— TCB vs. PCB
— user-level vs. kernel-level threads?
« performance implications
 functionality implications
 How does thread scheduling differ from process
scheduling?
— what operations do threads support?

— what happens on a thread context switch? what is saved in
TCB?

— preemptive vs. non-preemptive scheduling?
— scheduler activations
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Processor Scheduling

Long term vs. short term

When does scheduling happen?

— Jjob changes state, interrupts, exceptions, job creation
Scheduling goals?

— maximize CPU utilization

— maximize job throughput

— minimize {turnaround time | waiting time | response time}
— batch vs. interactive: what are their goals?

What is starvation? what causes it?

FCFS/FIFO, SPT, SRPT, priority, RR, MLFQ, CFS
(completely fair scheduler)
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Synchronization

« Why do we need it?
— data coordination? execution coordination?
— what are race conditions? when do they occur?
— when are resources shared? (variables, heap objects, ...)

 What is mutual exclusion?
— what is a critical section?
— what are the requirements of critical section solutions?
* mutex, progress, bounded waiting, performance
— what are mechanisms for programming critical sections?
* locks, semaphores, monitors, condition variables
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Locks

 What does it mean for acquire/release to be atomic?

* how can locks be implemented?
— spinlocks? interrupts? OS/thread-scheduler?
— test-and-set?
— limitations of locks?
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Semaphores and Monitors

« Semaphores

basic operations: wait vs. signal?
difference between semaphore and lock?

when and how do threads block on semaphores? when do
they wake?

bounded buffers problem
» producer/consumer
readers/writers problem

how is all of this implemented
* moving descriptors on and off queues

 Monitors

the operations and their implementation
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Non-blocking Synchronization

What does it mean to be “non-blocking”?
Why might you want it?

Compare-and-swap semantics

“same value” problem and solution approach
General idea of implementation of a FIFO
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Deadlock

static prevention, dynamic avoidance,
detection/recovery

tradeoffs among these
graph reducibility
approaches

— Hold and wait

— Resource ordering

— Banker's algorithm
— Detect and eliminate
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Disks

Physical (spinning) disk structure
— platters, surfaces, tracks, sectors, cylinders, arms, heads

Disk interface
— how does OS make requests to the disk?

Disk performance
— access time = seek + rotation + transfer

Disk scheduling

— how does it improve performance?
— FCFS, SSTF, SCAN, C-SCAN?

Implications of solid state drives
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Files and Directories

What is a file

— what operations are supported?

— what characteristics do they have?

— what are file access methods?
What is a directory

— what are they used for?

— how are they implemented?

— what is a directory entry?

How does path name translation work?

ACLs vs. capabillities
— matrix
— advantages and disadvantages of each
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File system data structures

* General strategies?
— contiguous, linked, indexed?
— tradeoffs?

« What is a Unix inode?

— how are they different than directories?

— how are inodes and directories used to do path resolution,
and find files?

« Everything about the Unix File System (UFS)
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FS buffer cache

« What is a buffer cache?
— why do OS’s use them?

« What are differences between caching reads and
writes?
— write-through, write-around, write-back/write-behind?
— read-ahead?
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FES, JES, LFS

What is FFS, how specifically does it improve over
original Unix FS?

How about JFS, what is the key problem that it
solves, what are the basic ideas?
— Define “failure atomicity”.

How about LFS, what are the basic ideas, when does
it yield an improvement, when does it not?
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RAID

Basic concepts of RAID
— stripe files across multiple disks to improve throughput
— compensate for decreased reliability with parity/ECC

Software vs. hardware implementation

Sources of improvement among RAID-0, RAID-1,
and RAID-5

RAID vs. backup (they are different!)
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Virtual Machine Monitors

Basic concepts of VMM's

In some detail, what is the relationship between an
application, the guest OS on which it runs, the VMM,
and the hardware?

— How does control transfer appropriately?

— How do reconcile the fact that both the apps and the guest
OS'’s are running in user mode?

— Be able to trace the handling of a syscall
Binary translation

Ways in which hardware implementations have been
evolving to improve efficiency of VMMs

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski



Projects

* You're responsible for understanding all aspects of
the projects!
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