CSE 451: Operating Systems
Spring 2017

Module 20
Course Review

John Zahorjan

© 2017 Gribble, Lazowska, Levy, Zahorjan,
Zbikowski

Architectural Support

Privileged instructions

— what are they?

— how does the CPU know whether to execute them?
— why do they need to be privileged?

— what do they manipulate?

Protected memory

— what are the various ways it can be implemented?
— “protected addresses”

System call

— what are the steps in handling?

Interrupts, exceptions, traps
— definition of each
— what are the steps in handling each?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

OS Structure

 What are the major components of an OS?

 How are they organized?

— what is the difference between monolithic, layered,
microkernel OS’s?

« advantages and disadvantages?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Memory Management

 Mechanisms for implementing memory management
— physical vs. virtual addressing
— base/limit registers
— partitioning, paging, segmentation

« |Internal and external fragmentation

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Paged Virtual Memory

Virtual address space
Page faults

Demand paging

— don'’t try to anticipate

Page replacement
— local, global, hybrid

Locality

— temporal, spatial
Working set
Thrashing

What is the complete set of steps for handling a page fault
— start to finish?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Page replacement algorithms

Belady’s — optimal, but unrealizable
FIFO — replace page loaded furthest in the past

LRU — replace page referenced furthest in the past
— approximate using PTE reference bit

LRU Clock — replace page that is “old enough”

Second chance (two-level FIFO due to lack of
hardware support required for LRU clock)

Working Set — keep the working set in memory

Page Fault Frequency — grow/shrink number of
frames as a function of fault rate

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Multi-level page tables, TLBs

 How to reduce overhead of paging?
— how do multi-level page tables work?
— what problem does TLB solve?
— how are they managed?
» software vs. hardware managed
« Page faults
— what is one? how is it used to implement demand paging?

— what is complete sequence of steps for translating a virtual
address to a PA?

« all the way from TLB accessto paging in from disk
— cache organization and VM interaction

« MM tricks
— shared memory? Mapped files? copy-on-write?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Processes

« What is a process? What does it virtualize?
— differences between program, process, thread?

— what is contained in process?
« what does PCB contain?
 PCB vs. address space

— state queues?
« which states, what transitions are possible?
« when do transitions happen?

* Process manipulation

— what does fork() do? how about exec()?
— how do shells work?

 |Inter-process communication (IPC)
— “command line args,” pipes, signals, shared memory
— shells

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Threads

e What is a thread?

— why are they useful?
— what's the address space look like?
— TCB vs. PCB
— user-level vs. kernel-level threads?
« performance implications
 functionality implications
 How does thread scheduling differ from process
scheduling?
— what operations do threads support?

— what happens on a thread context switch? what is saved in
TCB?

— preemptive vs. non-preemptive scheduling?
— scheduler activations

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Processor Scheduling

Long term vs. short term

When does scheduling happen?

— Jjob changes state, interrupts, exceptions, job creation
Scheduling goals?

— maximize CPU utilization

— maximize job throughput

— minimize {turnaround time | waiting time | response time}
— batch vs. interactive: what are their goals?

What is starvation? what causes it?

FCFS/FIFO, SPT, SRPT, priority, RR, MLFQ, CFS
(completely fair scheduler)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Synchronization

« Why do we need it?
— data coordination? execution coordination?
— what are race conditions? when do they occur?
— when are resources shared? (variables, heap objects, ...)

 What is mutual exclusion?
— what is a critical section?
— what are the requirements of critical section solutions?
* mutex, progress, bounded waiting, performance
— what are mechanisms for programming critical sections?
* locks, semaphores, monitors, condition variables

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Locks

 What does it mean for acquire/release to be atomic?

* how can locks be implemented?
— spinlocks? interrupts? OS/thread-scheduler?
— test-and-set?
— limitations of locks?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Semaphores and Monitors

« Semaphores

basic operations: wait vs. signal?
difference between semaphore and lock?

when and how do threads block on semaphores? when do
they wake?

bounded buffers problem
» producer/consumer
readers/writers problem

how is all of this implemented
* moving descriptors on and off queues

 Monitors

the operations and their implementation

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Non-blocking Synchronization

What does it mean to be “non-blocking”?
Why might you want it?

Compare-and-swap semantics

“same value” problem and solution approach
General idea of implementation of a FIFO

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Deadlock

static prevention, dynamic avoidance,
detection/recovery

tradeoffs among these
graph reducibility
approaches

— Hold and wait

— Resource ordering

— Banker's algorithm
— Detect and eliminate

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Disks

Physical (spinning) disk structure
— platters, surfaces, tracks, sectors, cylinders, arms, heads

Disk interface
— how does OS make requests to the disk?

Disk performance
— access time = seek + rotation + transfer

Disk scheduling

— how does it improve performance?
— FCFS, SSTF, SCAN, C-SCAN?

Implications of solid state drives

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Files and Directories

What is a file

— what operations are supported?

— what characteristics do they have?

— what are file access methods?
What is a directory

— what are they used for?

— how are they implemented?

— what is a directory entry?

How does path name translation work?

ACLs vs. capabillities
— matrix
— advantages and disadvantages of each

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

File system data structures

* General strategies?
— contiguous, linked, indexed?
— tradeoffs?

« What is a Unix inode?

— how are they different than directories?

— how are inodes and directories used to do path resolution,
and find files?

« Everything about the Unix File System (UFS)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

FS buffer cache

« What is a buffer cache?
— why do OS’s use them?

« What are differences between caching reads and
writes?
— write-through, write-around, write-back/write-behind?
— read-ahead?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

FES, JES, LFS

What is FFS, how specifically does it improve over
original Unix FS?

How about JFS, what is the key problem that it
solves, what are the basic ideas?
— Define “failure atomicity”.

How about LFS, what are the basic ideas, when does
it yield an improvement, when does it not?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

RAID

Basic concepts of RAID
— stripe files across multiple disks to improve throughput
— compensate for decreased reliability with parity/ECC

Software vs. hardware implementation

Sources of improvement among RAID-0, RAID-1,
and RAID-5

RAID vs. backup (they are different!)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Virtual Machine Monitors

Basic concepts of VMM's

In some detail, what is the relationship between an
application, the guest OS on which it runs, the VMM,
and the hardware?

— How does control transfer appropriately?

— How do reconcile the fact that both the apps and the guest
OS'’s are running in user mode?

— Be able to trace the handling of a syscall
Binary translation

Ways in which hardware implementations have been
evolving to improve efficiency of VMMs

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Projects

* You're responsible for understanding all aspects of
the projects!

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

