
CSE 451: Operating Systems

Spring 2017

Module 19

Virtual Machine Monitors

John Zahorjan

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

What do VMMs enable?

• Running multiple operating systems (called “guest
OS’s”) and their applications on a single physical
computer, as if each were running on its own private
virtual computer

• Efficient – mostly direct execution, rather than
simulation

• Contemporary examples
– VMware

– Microsoft’s VirtualPC / VirtualServer

– Parallels (Mac)

– Xen

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

VMM structure

hardware

virtual machine monitor

Linux

Virtual Machine =

Guest OS + apps

Virtual Machine =

Guest OS + apps

Windows

applications applications

hw interface

another

hw interface

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Basic ideas

• Guest OS runs in user mode

• When any kind of interrupt / exception / trap occurs,

we’ll end up in the VMM rather than the guest OS

• VMM simulates state changes that would have been

made by the hardware, then restarts VM at the guest

OS handler address

– E.g., stuffs the saved PC where the architecture says it

should be

• When the guest OS tries to execute a privileged

instruction

– VMM gets control, simulates effect of privileged instruction

• VMM knows that guest OS was in virtual kernel mode so the

attempted operation is OK

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

VMM History

• Conceived by IBM in the late 1960’s

– CP-40, CP-67, VM/360

• Sold continuously since then

• Used first for OS development and debugging, then

for time sharing (multiple single-user OS’s, plus a few

single-job batch OS’s), eventually for server

consolidation

System 370 Machine

VM/370

Batch processing

OS

Time sharing

OS

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

VMMs Today

• OS development and debugging

• Software compatibility testing

• Running software from another OS

– or another OS version (newer or older than current)

• Virtual infrastructure for Internet services (server consolidation)

• Software system distribution

– Distribute an entire, configured machine, rather than an app that

needs configuring

• Examples

– Run Windows on your Mac, or MacOS on your PC

– CSE Home virtual machine

– Amazon’s Elastic Compute Cloud (EC2)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Comparing the Unix and VMM APIs

UNIX VMM

Storage File system (virtual) disk

Networking Sockets (virtual) Ethernet

Memory Virtual Memory (virtual) Physical memory

Display /dev/console
(virtual) Keyboard, display

device

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Possible Implementation Strategy:

Complete machine emulation

• The VMM implements the complete

hardware architecture as a software

simulation

while(true) {

Instruction instr = fetch();

// emulate behavior in software

instr.emulate();

}

Drawback: This is really slow

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Physical hardware

loads,stores,
branches,

ALU operations
VMM

machine halt,

I/O instructions,

MMU manipulation,

disabling interrupts

Practical alternative: VMM gets control on

privileged instructions only
• Treat guest operating systems (and their apps) like an application

– Guest apps run in user mode (mostly no problem…)

– Guest OS runs in user mode (somewhat more of a problem…)

– Most instructions execute natively on the CPU

– Privileged instructions and traps transfer control to VMM, which reflects them
back up to guest OS (after emulating virtual hw state changes)

OS + apps

V i r t u a l m a c h i n e s
. . .

OS + apps OS + apps

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Virtualizing the User/Kernel Boundary

• Both the guest OS and applications run in (physical) user-mode

• For each virtual machine, the VMM keeps a software mode bit:

– During a system call, switch to “kernel” mode

– On system call return, switch to “user” mode

• What does the VMM do if a VM executes a privileged instruction
while in virtual user mode?

• What does the VMM do if a VM executes a privileged instruction
while in virtual kernel mode?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Tracing Through a File System Read

Application Guest OS VMM Hardware

read() syscall
trap detected

trap handler;

change VM

to “kernel” mode

trap handler

handle read syscall

read from disk()
priv inst. detected

trap handler;

emulate I/O

.

.

.

.

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Questions, to clarify …

• What if the I/O could be handled from the buffer

cache?

• Does the VMM handle a VM’s I/O request

synchronously?

• There are a zillion different types of disks (and

networks and …) …

Do the device drivers for these reside in the guest OS

or in the VMM?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

A possible “gotcha”

• All instructions that modify hardware state must be

privileged (so that VMM can get control, modify the

virtual hardware state for that guest, and not modify

the physical hardware state)

• Example: Suppose the ERET instruction (return to a

user process after handling an exception) is not

privileged

– ERET sets the PC to the saved PC, and sets CPU mode to

user

– There doesn’t seem to be a reason to prevent user

processes from doing this (even if there’s no reason for them

to want to)

Why would this be a problem for a VMM?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

x86

• Conditions for an architecture to be virtualizable were

defined in 1974

• x86 architecture did not satisfy these conditions!

– Many reasons, but most of them stem from instructions that

have different behavior in user mode and kernel mode, and

that don’t trap when executed in user mode

• Approach: binary re-writing

– When a code page is loaded, scan it, looking for offending

instructions

– Patch these to cause a fault

– Remember the instruction that used to be there

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Other approaches

• Hardware: Both Intel (VT-x) and AMD (AMD-V) have

developed virtualization extensions to the

architecture (starting ~2006)

• Paravirtualization: Export a slight modification of the

hardware; port the OS to this new hardware

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Memory

• VMM’s also utilize memory protection (in addition to

privileged instructions) to do their job

• Have not described how memory is virtualized by a

VMM, creating “virtual physical memory” for the guest

OS’s

• Approach involves the VMM futzing with the page

tables of the guest OS’s

Trust Issues

Problem:

– Who can you trust?

– OS protects processes from each other

• OS is “trusted” since you’re running it on your hardware

• You don’t worry about OS snooping your data

– But in the cloud, Amazon (or Microsoft or Google)

are running your operating systems in their VMM

• VMs are ”just” user mode processes

• VMM “naturally” isolates them

• But, the VMM can look into the guest OS/process!

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

How You Can Trust The VMM

Solution:
– Tricky hardware!

– Keep all data encrypted
• On disk, no problem.

• In memory, sure… but...

• How does the processor read/write/execute?

– Intel SGX/MEE processor / memory controller
• RAM is encrypted!

• Special instructions to tell processor where the encrypted

regions are

• Processor decrypts pages into hidden caches and executes

from there

– A. Baumann, M. Peinado, and G. Hunt, “Shielding

Applications from an Untrusted Cloud with Haven,” Sep.

2014.

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

