CSE 451: Operating Systems
Spring 2017

Module 19
Virtual Machine Monitors

John Zahorjan

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

What do VMMSs enable?

* Running multiple operating systems (called “guest
OS’s”) and their applications on a single physical
computer, as if each were running on its own private
virtual computer

« Efficient — mostly direct execution, rather than
simulation

« Contemporary examples
— VMware
— Microsoft’s VirtualPC / VirtualServer
— Parallels (Mac)
— Xen

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

VMM structure

Virtual Machine = Virtual Machine =
Guest OS + apps Guest OS + apps
~ ~
applications applications
< >~
Windows Linux
_ _
virtual machine monitor another
hw interface
hardware \
hw interface

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Basic ideas

Guest OS runs In user mode

When any kind of interrupt / exception / trap occurs,
we'll end up in the VMM rather than the guest OS

VMM simulates state changes that would have been
made by the hardware, then restarts VM at the guest
OS handler address

— E.g., stuffs the saved PC where the architecture says it
should be
When the guest OS tries to execute a privileged
Instruction

— VMM gets control, simulates effect of privileged instruction

VMM knows that guest OS was in virtual kernel mode so the
attempted operation is OK

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

VMM History

« Conceived by IBM in the late 1960’s
— CP-40, CP-67, VM/360

e Sold continuously since then

« Used first for OS development and debugging, then
for time sharing (multiple single-user OS'’s, plus a few

single-job batch OS’s), eventually for server
consolidation

Batch processing Time sharing
OS OS

VM/370
System 370 Machine

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

VMMs Today

OS development and debugging
Software compatibility testing
Running software from another OS
— or another OS version (newer or older than current)
Virtual infrastructure for Internet services (server consolidation)

Software system distribution

— Distribute an entire, configured machine, rather than an app that
needs configuring

Examples
— Run Windows on your Mac, or MacOS on your PC
— CSE Home virtual machine
— Amazon’s Elastic Compute Cloud (EC2)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Comparing the Unix and VMM APIs

UNIX VMM
Storage File system (virtual) disk
Networking Sockets (virtual) Ethernet
Memory Virtual Memory (virtual) Physical memory
Display /dev/console (virtual) KZL?/?CZrd' display

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Possible Implementation Strategy:
Complete machine emulation

« The VMM implements the complete
hardware architecture as a software |
simulation

"¢ ARCHITECTURE
while (true) { ” REFERET)%E
Instruction instr = fetch(); M“I .‘] :
// emulate behavior in software ,. &

instr.emulate () ; g DAVID SEAL
}
V‘V‘

Drawback: This is really slow

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Practical alternative: VMM gets control on

privileged instructions only

Treat guest operating systems (and their apps) like an application

Guest apps run in user mode (mostly no problem...)
Guest OS runs in user mode (somewhat more of a problem...)
Most instructions execute natively on the CPU

Privileged instructions and traps transfer control to VMM, which reflects them
back up to guest OS (after emulating virtual hw state changes)

OS+a§OS+a§ OS +

N DR
Virtual ma

loads, stores, machine halt,
branches, vMmMm || /O instructions,
ALU operations MMU manipulation,
| I v disabling interrupts

Physical hardware

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Virtualizing the User/Kernel Boundary

Both the guest OS and applications run in (physical) user-mode

For each virtual machine, the VMM keeps a software mode bit:
— During a system call, switchto “kernel” mode
— On system call return, switch to “user” mode

What does the VMM do if a VM executes a privileged instruction
while in virtual user mode?

What does the VMM do if a VM executes a privileged instruction
while in virtual kernel mode?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Tracing Through a File System Read

Application

read() syscall

Guest OS VMM Hardware

— trap detected

trap handler;
change VM —

«— to“kernel” mode
trap handler

handle read syscall

read fromdisk) ~——— ———7—_ | priv inst. detected
trap handler;, «—

emulate 1/0

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Questions, to clarify ...

« What if the I/O could be handled from the buffer
cache?

 Does the VMM handle a VM’s |/O request
synchronously?

 There are a zillion different types of disks (and
networks and ...) ...

Do the device drivers for these reside in the guest OS
or in the VMM?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

A possible “gotcha”

« All instructions that modify hardware state must be
privileged (so that VMM can get control, modify the
virtual hardware state for that guest, and not modify
the physical hardware state)

 Example: Suppose the ERET instruction (return to a
user process after handling an exception) is not
privileged
— ERET sets the PC to the saved PC, and sets CPU mode to

user

— There doesn’t seem to be a reason to prevent user
processes from doing this (even if there’s no reason for them
to want to)

Why would this be a problem for a VMM?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

X386

Conditions for an architecture to be virtualizable were
defined in 1974

« Xx86 architecture did not satisfy these conditions!

— Many reasons, but most of them stem from instructions that
have different behavior in user mode and kernel mode, and
that don’t trap when executed in user mode

« Approach: binary re-writing

— When a code page is loaded, scan it, looking for offending
Instructions

— Patch these to cause a fault
— Remember the instruction that used to be there

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Other approaches

 Hardware: Both Intel (VT-x) and AMD (AMD-V) have
developed virtualization extensions to the
architecture (starting ~2006)

« Paravirtualization: Export a slight modification of the
hardware; port the OS to this new hardware

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Memory

« VMM'’s also utilize memory protection (in addition to
privileged instructions) to do their job

« Have not described how memory is virtualized by a

VMM, creating “virtual physical memory” for the guest
OS’s

« Approach involves the VMM futzing with the page
tables of the guest OS’s

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

rust Issues

Problem:
— Who can you trust?

— OS protects processes from each other
« OS is “trusted” since you're running it on your hardware
* You don’t worry about OS snooping your data

— But in the cloud, Amazon (or Microsoft or Google)
are running your operating systems in their VMM
* VMs are "just” user mode processes
VMM “naturally” isolates them
« But, the VMM can look into the guest OS/process!

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

How You Can Trust The VMM

Solution:
— Tricky hardware!
— Keep all data encrypted
* On disk, no problem.
* In memory, sure... but...
» How does the processor read/write/execute?
— Intel SGX/MEE processor / memory controller

« RAM is encrypted!
» Special instructions to tell processor where the encrypted

regions are
* Processor decrypts pages into hidden caches and executes
from there

— A. Baumann, M. Peinado, and G. Hunt, “Shielding
Applications from an Untrusted Cloud with Haven,” Sep.
2014.

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

