
CSE 451: Operating Systems

Spring 2017

Module 14

BSD UNIX Fast File System

John Zahorjan

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

File system implementations

• We’ve looked at disks

• We’ve looked at file systems generically

• We’ve looked in detail at the implementation of the

original Bell Labs UNIX file system

– a great simple yet practical design

– exemplifies engineering tradeoffs that are pervasive in

system design

• Now we’ll look at some more advanced file systems

– First, the Berkeley Software Distribution (BSD) UNIX Fast

File System (FFS)

• enhanced performance for the UNIX file system

• at the heart of most UNIX file systems today

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

BSD UNIX FFS

• Original (1970) UNIX file system was elegant but

slow

– poor disk throughput

• far too many seeks, on average

• Berkeley UNIX project did a redesign in the mid ’80’s

– McKusick, Joy, Fabry, and Leffler

– improved disk throughput, decreased average request

response time

– principal idea is that FFS is aware of disk structure

• it places related things on nearby cylinders to reduce seeks

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Recall the UNIX disk layout

• Boot block

– can boot the system by loading from this block

• Superblock

– specifies boundaries of next 3 areas, and contains head of

freelists of inodes and file blocks

• i-node area

– contains descriptors (i-nodes) for each file on the disk; all i-

nodes are the same size; head of freelist is in the superblock

• File contents area

– fixed-size blocks; head of freelist is in the superblock

• Swap area

– holds processes that have been swapped out of memory

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

0

1

10

11

12

…

…

…

…

…

… …

Recall the UNIX block list / file content structure

• directory entries point to i-nodes – file headers

• each i-node contains a bunch of stuff including 13

block pointers

– first 10 point to file blocks (i.e., 512B blocks of file data)

– then single, double, and triple indirect indexes

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

UNIX FS data and i-node placement

• Original UNIX FS had three major performance
problems:
– data blocks are allocated randomly in aging file systems

• blocks for the same file allocated sequentially when FS is new

• as FS “ages” and fills, it needs to allocate blocks freed up when
other files are deleted

– deleted files are essentially randomly placed

– so, blocks for new files become scattered across the disk!

– data blocks are relatively small

• reduces fragmentation, but exacerbates the problem above

– i-nodes are allocated far from blocks

• all i-nodes at beginning of disk, far from data

• traversing file name paths, manipulating files, directories
requires going back and forth from i-nodes to data blocks

• All three of these generate many long seeks!

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

FFS: Cylinder groups

• FFS addressed the first and third problems using the

notion of a cylinder group

– disk is partitioned into groups of cylinders

– data blocks from a file are all placed in the same cylinder group

– files in same directory are placed in the same cylinder group

– i-node for file placed in same cylinder group as file’s data

• Introduces a free space requirement

– to be able to allocate according to cylinder group, the disk must

have free space scattered across all cylinders

– in FFS, 10% of the disk is reserved just for this purpose!

• good insight: keep disk partially free at all times!

• this is why it may be possible for df to report >100% full!

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

FFS: Increased block size, fragments

• The original UNIX FS had 512B blocks

– even more seeking

– small maximum file size (~1GB maximum file size)

• Then a version had 1KB blocks

– still pretty puny

• FFS uses a 4KB blocksize

– big improvement in disk throughput - fewer seeks for large files

– allows for very large files (4TB) – exponential impact of indirect
index

– but, introduces internal fragmentation

• on average, each file wastes 2K!

• worse, the average Unix file size was only about 1K!

– fix: introduce “fragments”

• 1KB pieces of a block

© 2017 Gribble, Lazowska, Levy, Zahorjan,

Zbikowski
9

FFS: Aggressive File Buffer Cache

• Exploit locality by caching file blocks in memory

– the cache is system wide, shared by all processes

– even a small (4MB) cache can be very effective (why?)

– many FS’s “read-ahead” into buffer cache

• What about writes?

– some apps assume data is on disk after write

• either “write-through” the buffer cache

• or “write-behind”

– maintain queue of uncommitted blocks, periodically flush. Unreliable!

– NVRAM: write into battery-backed RAM. Expensive!

– LFS, JFS: we’ll talk about this soon!

• Buffer cache issues:

– competes with VM for physical frames

• integrated VM/buffer cache?

– need replacement algorithms here

• LRU usually

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

FFS: Awareness of hardware characteristics

• Original UNIX FS was unaware of disk parameters

• FFS parameterizes the FS according to disk and

CPU characteristics

– e.g., account for CPU interrupt and processing time, plus

disk characteristics, in deciding where to lay out sequential

blocks of a file, to reduce rotational latency

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

FFS: Performance

• This was a long time ago – look at the relative

performance, not the absolute performance!

(CPU maxed

doing block

allocation!)

(block size / fragment size)

(983KB/s is

theoretical

disk

throughput)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

FFS: Faster, but less elegant

(warts make it faster but ugly)

• Multiple cylinder groups

– effectively, treat a single big disk as multiple small disks

– additional free space requirement (this is cheap, though)

• Bigger blocks

– but fragments, to avoid excessive fragmentation

• Aggressive File Buffer Cache

• Aware of hardware characteristics

– ugh!

