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File system implementations

We've looked at disks
We've looked at file systems generically

We've looked in detail at the implementation of the

original Bell Labs UNIX file system

— a great simple yet practical design

— exemplifies engineering tradeoffs that are pervasive in
system design

Now we'll look at some more advanced file systems

— First, the Berkeley Software Distribution (BSD) UNIX Fast
File System (FFS)

« enhanced performance for the UNIX file system
 at the heart of most UNIX file systems today
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BSD UNIX FFS

« Original (1970) UNIX file system was elegant but
slow

— poor disk throughput
 far too many seeks, on average

« Berkeley UNIX project did a redesign in the mid '80’s

— McKusick, Joy, Fabry, and Leffler

— Improved disk throughput, decreased average request
response time

— principal idea is that FFS is aware of disk structure
* it places related things on nearby cylinders to reduce seeks
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Recall the UNIX disk layout

Boot block
— can boot the system by loading from this block

Superblock

— specifies boundaries of next 3 areas, and contains head of
freelists of inodes and file blocks

I-node area

— contains descriptors (i-nodes) for each file on the disk; all i-
nodes are the same size; head of freelist is in the superblock

File contents area
— fixed-size blocks; head of freelist is in the superblock

Swap area
— holds processes that have been swapped out of memory
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Recall the UNIX block list / file content structure

 directory entries point to i-nodes — file headers

« each iI-node contains a bunch of stuff including 13
block pointers
— first 10 point to file blocks (i.e., 512B blocks of file data)
— then single, double, and triple indirect indexes
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UNIX FS data and i-node placement

« Original UNIX FS had three major performance
problems:

— data blocks are allocated randomly in aging file systems
* blocks for the same file allocated sequentially when FS is new

« as FS “ages” and fills, it needs to allocate blocks freed up when
other files are deleted

— deleted files are essentially randomly placed
— S0, blocks for new files become scattered across the disk!

— data blocks are relatively small

» reduces fragmentation, but exacerbates the problem above
— iI-nodes are allocated far from blocks

« all i-nodes at beginning of disk, far from data

 traversing file name paths, manipulating files, directories
requires going back and forth from i-nodes to data blocks

« All three of these generate many long seeks!
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FFS: Cylinder groups

FFS addressed the first and third problems using the
notion of a cylinder group

— disk is partitioned into groups of cylinders

— data blocks from a file are all placed in the same cylinder group
— files in same directory are placed in the same cylinder group

— i-node for file placed in same cylinder group as file's data

Introduces a free space reguirement

— to be able to allocate according to cylinder group, the disk must
have free space scattered across all cylinders

— In FFS, 10% of the disk is reserved just for this purpose!
« good insight: keep disk partially free at all times!
 this is why it may be possible for df to report >100% full!
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FFS: Increased block size, fragments

* The original UNIX FS had 512B blocks
— even more seeking
— smallmaximum file size ( ~1GB maximum file size)

« Then a version had 1KB blocks
— still pretty puny

 FFS uses a 4KB blocksize
— big improvement in disk throughput - fewer seeks for large files

— allowsfor very large files (4TB) — exponential impact of indirect
index

— but, introduces internal fragmentation
* 0on average, each file wastes 2K!
* worse, the average Unix file size was only about 1K!

— fix: introduce “fragments”
» 1KB pieces of a block
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FFS: Aggressive File Buffer Cache

« Exploit locality by caching file blocks in memory
— the cacheis system wide, shared by all processes
— even a small (4MB) cache can be very effective (why?)
— many FS’s “read-ahead” into buffer cache

« \What about writes?

— some apps assume data is on disk after write
« either “write-through” the buffer cache
 or “write-behind”
— maintain queue of uncommitted blocks, periodically flush. Unreliable!
— NVRAM: write into battery-backed RAM. Expensive!
— LFS, JFS: we'll talk about this soon!

 Buffer cache issues:

— competes with VM for physical frames
 integrated VM/buffer cache?
— need replacementalgorithms here

* LRU usually
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FFS: Awareness of hardware characteristics

« Original UNIX FS was unaware of disk parameters
 FFS parameterizes the FS according to disk and

CPU characteristics

— e.g., account for CPU interrupt and processing time, plus
disk characteristics, in deciding where to lay out sequential
blocks of a file, to reduce rotational latency
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 This was a long time ago — look at the relative

FFS: Performance

performance, not the absolute performance!

Type of Processor and Read
File System Bus Measured Speed Bandwidth % CPU
old 1024 750/UNIBUS 29 Kbytes/sec 20/983 3% 1%
new 4096/1024 750/UNIBUS 221 Kbytes/sec  221/983 22% 43%
new 8192/1024 750/UNIBUS 233 Kbytes/sec  233/983 24% 29%
new 4096/1024  750/MASSBUS | 466 Kbytes/sec  406/983 47% 73%
new 8192/1024  750/MASSBUS | 466 Kbytes/sec  466/983 47% 54%

(983KBI/s is
theoretical
disk
throughput)

(block size / fragment size)

lable 2a — Reading rates of the old and new UNIX file systems.

Type of Processor and Write
File System Bus Measured Speed Bandwidth % CPU
old 1024 750/UNIBUS 48 Kbytes/sec 48/983 5% 29%
new 4096/1024 750/UNIBUS 142 Kbytes/sec ~ 142/983 14% 43%
new 8192/1024 750/UNIBUS 215 Kbytes/sec  215/983 22% 46%
new 4096/1024  750/MASSBUS | 323 Kbytes/sec  323/983 33% 04%
new 8192/1024  750/MASSBUS | 466 Kbytes/sec  406/983 47% 95%

Table 2b - Writing rates of the old and new UNIX file systems.
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FFS: Faster, but less elegant
(warts make It faster but ugly)

Multiple cylinder groups
— effectively, treat a single big disk as multiple small disks
— additional free space requirement (this is cheap, though)

Bigger blocks
— but fragments, to avoid excessive fragmentation

Aggressive File Buffer Cache

Aware of hardware characteristics
— ugh!
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