CSE 451: Operating Systems
Spring 2017

Module 14
BSD UNIX Fast File System

John Zahorjan

© 2017 Gribble, Lazowska, Lewy, Zahorjan, Zbikowski

File system implementations

We've looked at disks
We've looked at file systems generically

We've looked in detail at the implementation of the

original Bell Labs UNIX file system

— a great simple yet practical design

— exemplifies engineering tradeoffs that are pervasive in
system design

Now we'll look at some more advanced file systems

— First, the Berkeley Software Distribution (BSD) UNIX Fast
File System (FFS)

« enhanced performance for the UNIX file system
 at the heart of most UNIX file systems today

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

BSD UNIX FFS

« Original (1970) UNIX file system was elegant but
slow

— poor disk throughput
 far too many seeks, on average

« Berkeley UNIX project did a redesign in the mid '80’s

— McKusick, Joy, Fabry, and Leffler

— Improved disk throughput, decreased average request
response time

— principal idea is that FFS is aware of disk structure
* it places related things on nearby cylinders to reduce seeks

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Recall the UNIX disk layout

Boot block
— can boot the system by loading from this block

Superblock

— specifies boundaries of next 3 areas, and contains head of
freelists of inodes and file blocks

I-node area

— contains descriptors (i-nodes) for each file on the disk; all i-
nodes are the same size; head of freelist is in the superblock

File contents area
— fixed-size blocks; head of freelist is in the superblock

Swap area
— holds processes that have been swapped out of memory

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Recall the UNIX block list / file content structure

 directory entries point to i-nodes — file headers

« each iI-node contains a bunch of stuff including 13
block pointers
— first 10 point to file blocks (i.e., 512B blocks of file data)
— then single, double, and triple indirect indexes

]
0 // = : Zi: L] Pl |
1 T : _ — B
: / Ei= —
. E/ N
10 -~ / : B
11 — 1. m
12 :
0 — | .
S . -

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

UNIX FS data and i-node placement

« Original UNIX FS had three major performance
problems:

— data blocks are allocated randomly in aging file systems
* blocks for the same file allocated sequentially when FS is new

« as FS “ages” and fills, it needs to allocate blocks freed up when
other files are deleted

— deleted files are essentially randomly placed
— S0, blocks for new files become scattered across the disk!

— data blocks are relatively small

» reduces fragmentation, but exacerbates the problem above
— iI-nodes are allocated far from blocks

« all i-nodes at beginning of disk, far from data

 traversing file name paths, manipulating files, directories
requires going back and forth from i-nodes to data blocks

« All three of these generate many long seeks!

© 2017 Gribble, Lazowska, Lewy, Zahorjan, Zbikowski

FFS: Cylinder groups

FFS addressed the first and third problems using the
notion of a cylinder group

— disk is partitioned into groups of cylinders

— data blocks from a file are all placed in the same cylinder group
— files in same directory are placed in the same cylinder group

— i-node for file placed in same cylinder group as file's data

Introduces a free space reguirement

— to be able to allocate according to cylinder group, the disk must
have free space scattered across all cylinders

— In FFS, 10% of the disk is reserved just for this purpose!
« good insight: keep disk partially free at all times!
 this is why it may be possible for df to report >100% full!

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

FFS: Increased block size, fragments

* The original UNIX FS had 512B blocks
— even more seeking
— smallmaximum file size (~1GB maximum file size)

« Then a version had 1KB blocks
— still pretty puny

 FFS uses a 4KB blocksize
— big improvement in disk throughput - fewer seeks for large files

— allowsfor very large files (4TB) — exponential impact of indirect
index

— but, introduces internal fragmentation
* 0on average, each file wastes 2K!
* worse, the average Unix file size was only about 1K!

— fix: introduce “fragments”
» 1KB pieces of a block

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

FFS: Aggressive File Buffer Cache

« Exploit locality by caching file blocks in memory
— the cacheis system wide, shared by all processes
— even a small (4MB) cache can be very effective (why?)
— many FS’s “read-ahead” into buffer cache

« \What about writes?

— some apps assume data is on disk after write
« either “write-through” the buffer cache
 or “write-behind”
— maintain queue of uncommitted blocks, periodically flush. Unreliable!
— NVRAM: write into battery-backed RAM. Expensive!
— LFS, JFS: we'll talk about this soon!

 Buffer cache issues:

— competes with VM for physical frames
 integrated VM/buffer cache?
— need replacementalgorithms here

* LRU usually

© 2017 Gribble, Lazowska, Levy, Zahorjan,
Zbikowski

FFS: Awareness of hardware characteristics

« Original UNIX FS was unaware of disk parameters
 FFS parameterizes the FS according to disk and

CPU characteristics

— e.g., account for CPU interrupt and processing time, plus
disk characteristics, in deciding where to lay out sequential
blocks of a file, to reduce rotational latency

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

 This was a long time ago — look at the relative

FFS: Performance

performance, not the absolute performance!

Type of Processor and Read
File System Bus Measured Speed Bandwidth % CPU
old 1024 750/UNIBUS 29 Kbytes/sec 20/983 3% 1%
new 4096/1024 750/UNIBUS 221 Kbytes/sec 221/983 22% 43%
new 8192/1024 750/UNIBUS 233 Kbytes/sec 233/983 24% 29%
new 4096/1024 750/MASSBUS | 466 Kbytes/sec 406/983 47% 73%
new 8192/1024 750/MASSBUS | 466 Kbytes/sec 466/983 47% 54%

(983KBI/s is
theoretical
disk
throughput)

(block size / fragment size)

lable 2a — Reading rates of the old and new UNIX file systems.

Type of Processor and Write
File System Bus Measured Speed Bandwidth % CPU
old 1024 750/UNIBUS 48 Kbytes/sec 48/983 5% 29%
new 4096/1024 750/UNIBUS 142 Kbytes/sec ~ 142/983 14% 43%
new 8192/1024 750/UNIBUS 215 Kbytes/sec 215/983 22% 46%
new 4096/1024 750/MASSBUS | 323 Kbytes/sec 323/983 33% 04%
new 8192/1024 750/MASSBUS | 466 Kbytes/sec 406/983 47% 95%

Table 2b - Writing rates of the old and new UNIX file systems.

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

(CPU maxed
doing block
allocation!)

FFS: Faster, but less elegant
(warts make It faster but ugly)

Multiple cylinder groups
— effectively, treat a single big disk as multiple small disks
— additional free space requirement (this is cheap, though)

Bigger blocks
— but fragments, to avoid excessive fragmentation

Aggressive File Buffer Cache

Aware of hardware characteristics
— ugh!

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

