
CSE 451: Operating Systems

Spring 2017

Module 8

Scheduling

John Zahorjan

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Scheduling

• In discussing processes and threads, we talked about

context switching

– an interrupt occurs (device completion, timer interrupt)

– a thread causes a trap or exception

– may need to choose a different thread/process to run

• We glossed over the choice of which process or

thread is chosen to run next

– “some thread from the ready queue”

• This decision is called scheduling
• scheduling is a policy

• context switching is a mechanism

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Classes of Schedulers

• Batch
– Throughput / utilization oriented

– Example: audit inter-bank funds transfers each night, Pixar rendering,
Hadoop/MapReduce jobs

• Interactive
– Response time oriented

– Example: attu.cs

– We’ll be talking primarily about interactive schedulers

• Real time
– Deadline driven

– Example: embedded systems (cars, airplanes, etc.)

• Parallel
– Speedup-driven

– Example: “space-shared” use of a 1000-processor machine for large
simulations

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Multiple levels of scheduling decisions

• Long term
– Should a new “job” be “initiated,” or should it be held?

• typical of batch systems

• what might cause you to make a “hold” decision?

• Medium term
– Should a running program be temporarily marked as non-

runnable (e.g., swapped out)?

• Short term
– Which thread should be given the CPU next? For how long?

– Which I/O operation should be sent to the disk next?

– On a multiprocessor:

• should we attempt to coordinate the running of threads from the
same address space in some way?

• should we worry about cache state (processor affinity)?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Scheduling Goals I: Performance

• Many possible metrics / performance goals (which

sometimes conflict)

– maximize CPU utilization

– maximize throughput (requests completed / s)

– minimize average response time (average time from

submission of request to completion of

response)

– minimize average waiting time (average time from

submission of request to start of execution)

– minimize energy (joules per instruction) subject to

some constraint (e.g., frames/second)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Scheduling Goals II: Fairness

• No single, compelling definition of “fair”

– How to measure fairness?

• Equal CPU consumption? (over what time scale?)

– Fair per-user? per-process? per-thread?

– What if one process is CPU bound and one is I/O bound?

• Sometimes the goal is to be unfair:

– Explicitly favor some particular class of requests (priority

system), but…

– avoid starvation (be sure everyone gets at least some

service)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 7

The basic situation

•••

•••

Schedulable units Resources

Scheduling:

- Who to assign each resource to

- When to re-evaluate your

decisions

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

When to assign?
• Pre-emptive vs. non-preemptive schedulers

– Non-preemptive

• once you give somebody the green light, they’ve got it until they
relinquish it

– an I/O operation

– allocation of memory in a system without swapping

– Preemptive

• you can re-visit a decision at any moment

– setting the timer allows you to preempt the CPU from a thread even if it
doesn’t relinquish it voluntarily

– in any modern system, if you mark a program as non-runnable, its memory
resources will eventually be re-allocated to others

• Re-assignment always involves some overhead

– Overhead doesn’t contribute to the goal of any scheduler

• We’ll assume “work conserving” policies

– Never leave a resource idle when someone wants it

• Why even mention this? When might it be useful to do something
else?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Before we look at specific policies

• There are some simple but useful “laws” to know

about …

• The Utilization Law: U = X * S

– Where U is utilization, X is throughput (requests per second),

and S is average service requirement

• Obviously true

• This means that utilization is constant, independent of the

schedule, so long as the workload can be processed

Performance in the Abstract

• Little’s Law: N = X * R

– Where N is average number in system, X is throughput, and R is

average response time (average time in system)

• This means that better average response time implies fewer in system,

and vice versa

– Proof:

• Let W denote the total time-in-system accumulated by all customers

during a time interval of length T

• The average number of requests in the system N = W / T

• If C customers complete during that time period, X = C/T

• The average time in system of each completing request R = W / C

• Algebraically, W/T = C/T * W/C.

• Thus, N = X * R

• (For this to have its natural meaning, the number in system at the

beginning and end of the period must be 0)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

(Not quite a law – requires some assumptions)

• Response Time at a single server under FCFS scheduling:

R = S / (1-U)

– Where S is the service time per customer and U is the utilization of

the resource

• Clearly, when a customer arrives, her response time will be the service

time of everyone ahead of her in line, plus her own service time: R =

S * (1+A)

– Assumes everyone has the same average service time

• Assume that the number you see ahead of you at your instant of arrival

is the long-term average number in line; so R = S * (1+N)

• By Little’s Law, R = S * (1 + X*R) = S + S*X*R = S / (1 – X*S)

• By the Utilization Law, U = X*S

• So R = S / (1-U)

• Average number in system:

N = U / (1-U)
– since N = X*R = X*S / (1-U) = U / (1-U)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

• Kleinrock’s Conservation Law for priority scheduling:

Sp Up * Rp = constant

– Where Up is the utilization by priority level p and Rp is the

time in system of priority level p

• This means you can’t improve the response time of one class

of task by increasing its priority, without hurting the response

time of at least one other class

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Scheduling Algorithm #1: FCFS/FIFO

• First-come first-served / First-in first-out (FCFS/FIFO)

– schedule in the order that they arrive

– “real-world” scheduling of people in (single) lines

• supermarkets, McD’s, Starbucks …

– jobs treated equally, no starvation

• In what sense is this “fair”?

• Sounds perfect!

– in the real world, when does FCFS/FIFO work well?

• even then, what’s it’s limitation?

– and when does it work badly?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

FCFS/FIFO example

• Suppose the duration of A is 5, and the durations of B
and C are each 1
– average response time for schedule 1 (assuming A, B, and

C all arrive at about time 0) is (5+6+7)/3 = 18/3 = 6

– average response time for schedule 2 is (1+2+7)/3 = 10/3 =
3.3

– consider also “elongation factor” – a “perceptual” measure:

• Schedule 1: A is 5/5, B is 6/1, C is 7/1 (worst is 7, ave is 4.7)

• Schedule 2: A is 7/5, B is 1/1, C is 2/1 (worst is 2, ave is 1.5)

Job A B C

CB Job A

time

1

2

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

• Average response time can be lousy

– small requests wait behind big ones

• May lead to poor utilization of other resources

– if you send me on my way, I can go keep another resource

busy

– FCFS may result in poor overlap of CPU and I/O activity

• E.g., a CPU-intensive job prevents an I/O-intensive job from

doing a small bit of computation, thus preventing it from going

back and keeping the I/O subsystem busy

• Note: The more copies of the resource there are to

be scheduled, the less dramatic the impact of

occasional very large jobs (so long as there is a

single waiting line)

– E.g., many cores vs. one core

FCFS/FIFO drawbacks

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Algorithm #2: SPT/SJF

• Shortest processing time first / Shortest job first

(SPT/SJF)

– choose the request with the smallest service requirement

• Provably optimal with respect to average response

time

– Why do we care about “provably optimal”?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

SPT/SJF optimality – The interchange

argument

tk

sf sg

tk+sf tk+sf+sg

• In any schedule that is not SPT/SJF, there is some

adjacent pair of requests f and g where the service time

(duration) of f, sf, exceeds that of g, sg

• The total contribution to average response time of f and

g is 2tk+2sf+sg

• If you interchange f and g, their total contribution will be

2tk+2sg+sf, which is smaller because sg < sf

• If the variability among request durations is zero, how

does FCFS compare to SPT for average response

time?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

• It’s non-preemptive

– So?

• … but there’s a preemptive version – SRPT (Shortest

Remaining Processing Time first) – that accommodates

arrivals (rather than assuming all requests are initially

available)

• Sounds perfect!

– what about starvation?

– can you know the processing time of a request?

– can you guess/approximate? How?

SPT/SJF drawbacks

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Algorithm #3: RR

• Round Robin scheduling (RR)

– Use preemption to offset lack of information about execution times

• I don’t know which one should run first, so let’s run them all!

– ready queue is treated as a circular FIFO queue

– each request is given a time slice, called a quantum

• request executes for duration of quantum, or until it blocks

– what signifies the end of a quantum?

• time-division multiplexing (time-slicing)

– great for timesharing

• no starvation

• Sounds perfect!

– how is RR an improvement over FCFS?

– how is RR an improvement over SPT?

– how is RR an approximation to SPT?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

RR drawbacks

• What if all jobs are exactly the same length?

– What would the pessimal schedule be (with average

response time as the measure)?

• What do you set the quantum to be?

– no value is “correct”

• if small, then context switch often, incurring high overhead

• if large, then response time degrades

• Treats all jobs equally
• if I run 100 copies of SETI@home, it degrades your service

• how might I fix this?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Algorithm #4: Priority

• Assign priorities to requests

– choose request with highest priority to run next

• if tie, use another scheduling algorithm to break (e.g., RR)

– Goal: non-fairness (favor one group over another)

• Abstractly modeled (and usually implemented) as

multiple “priority queues”

– put a ready request on the queue associated with its priority

• Sounds perfect!

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Priority drawbacks

• How are you going to assign priorities?

• Starvation

– if there is an endless supply of high priority jobs, no low-

priority job will ever run

• Solution: “age” threads over time

– increase priority as a function of accumulated wait time

– decrease priority as a function of accumulated processing

time

– many ugly heuristics have been explored in this space

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Program behavior and scheduling

• An analogy:

– Say you're at the airport waiting for a flight

– There are two identical ATMs:

• ATM 1 has 3 people in line

• ATM 2 has 6 people in line

– You get into the line for ATM 1

– ATM 2's line shrinks to 4 people

– Why might you now switch lines, preferring 5th in line for

ATM 2 over 4th in line for ATM 1?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Residual Life

• Given that a job has already executed for X seconds,
how much longer will it execute, on average, before

completing?

Residual

Life

Time Already Executed

Give priority to new jobs

Round robin

Give priority to old jobs

Residual Life

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Multi-level Feedback Queues (MLFQ)

• It’s been observed that workloads tend to have

increasing residual life – “if you don’t finish quickly,

you’re probably a lifer”

• This is exploited in practice by using a policy that

discriminates against the old

• MLFQ:

– there is a hierarchy of queues

– there is a priority ordering among the queues

– new requests enter the highest priority queue

– each queue is scheduled RR

– requests move between queues based on execution history

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

UNIX scheduling

• Canonical scheduler is pretty much MLFQ
– 3-4 classes spanning ~170 priority levels

• timesharing: lowest 60 priorities

• system: middle 40 priorities

• real-time: highest 60 priorities

– priority scheduling across queues, RR within

• process with highest priority always run first

• processes with same priority scheduled RR

– processes dynamically change priority

• increases over time if process blocks before end of quantum

• decreases if process uses entire quantum

• Goals:
– reward interactive behavior over CPU hogs

• interactive jobs typically have short bursts of CPU

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Scheduling the Apache web server SRPT

• What does a web request consist of? (What’s it trying

to get done?)

• How are incoming web requests scheduled, in

practice?

• How might you estimate the service time of an

incoming request?

• Starvation under SRPT is a problem in theory – is it a

problem in practice?

– “Kleinrock’s conservation law”

(Work by Bianca Schroeder and Mor Harchol-Balter at CMU)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski© 2003 Bianca Schroeder & Mor Harchol-Balter, CMU

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Summary

• Scheduling takes place at many levels

• It can make a huge difference in performance

– this difference increases with the variability in service

requirements

• Multiple goals, sometimes conflicting

• There are many “pure” algorithms, most with some

drawbacks in practice – FCFS, SPT, RR, Priority

• Real systems use hybrids that exploit observed

program behavior

• Scheduling is still important, and there are still new

angles to be explored – particularly in large-scale

datacenters for reasons of cost and energy

