CSE 451: Operating Systems
Spring 2017

Module 3

Operating System
Components and Structure

John Zahorjan

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

OS structure

 The OS sits between application programs and the
hardware
— it mediates access and abstracts away ugliness
— programs reguest services via traps or exceptions
— devices request attention via interrupts

‘\W
‘ starti ‘

tr
excepﬂon

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

User Apps
N fAﬂ

Operating System
AN

Firefox Photoshop || Acrobat Java
Application Interface (API)

File Memory Process Network
Systems Manager Manager Support
Device Interrupt Boot &

Drivers Handlers Init

Hardware Abstraction Layer

Hardware (CPU, devices)

© 2017 Gribble, Lazowska, Lewy, Zahorjan, Zbikowski

3|qenod

[Command Interpreter]
.4

—
(Informa‘rion Se/ru/'ce

Accounting Sys’renﬂ

Error Handling
77 T S
io C \54
V/r'o/’recf n Syst ‘\\“ 2 "\‘4)\
/ / : ‘ A Memory .. Secondary ;‘r//r'age]
P

[Process Management Management Management

ey
O System |

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Major OS components

processes/threads

memory

/O

secondary storage

file systems

protection

shells (command interpreter, or OS Ul)
GUI

networking

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Process management

 An OS executes many kinds of activities:
— users’ programs
— batch jobs or scripts

— system programs
» print spoolers, name servers, file servers, network daemons, ...

« Each of these activities is encapsulated in a process

— a process includes the execution context
» PC, registers, VM, OS resources (e.g., open files), etc...
* plus the program itself (code and data)

— the OS’s process module manages these processes
« creation, destruction, scheduling, ...

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Important. Processes vs. Threads

« Soon, we will separate the “thread of control” aspect
of a process (program counter, call stack) from its
other aspects (address space, open files, owner,
etc.). And we will allow each {process / address
space} to have multiple threads of control.

e But for now — for simplicity and for historical reasons
— consider each {process / address space} to have a
single thread of control.

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Program / processor / process

* Note that a program is totally passive
— Just bytes on a disk that encode instructions to be run

« A process is an instance of a program being
executed by a (real or virtual) processor

— at any instant, there may be many processes running copies
of the same program (e.g., an editor); each process is
separate and (usually) independent

— Linux: ps -auwwx tolist all processes

process A process B
code page code page
stack tables stack tables
PC PC
registers resources registers resources

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

States of a user process

dispatch

interrupt

trap or
exgeption

interrupt

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Process operations

« The OS provides the following kinds operations on
processes (i.e., the process abstraction interface):
— create a process
— delete a process
— suspend a process
— resume a process
— clone a process
— Inter-process communication
— Inter-process synchronization

© 2017 Gribble, Lazowska, Lewy, Zahorjan, Zbikowski

Memory management

The primary memory is the directly accessed storage for the
CPU

— programs must be resident in memory to execute
— memory access is fast
— but memory doesn’t survive power failures

OS must:
— allocate memory space for programs
— deallocate space when needed by rest of system

— maintain mappings from physical to virtual memory
» through page tables

—

e Mechanism

-

— decide how much memory to allocate to each process

) Policy
— decide when to remove a process from memory

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 11

/0O

A big chunk of the OS kernel deals with I/O
— hundreds of thousands of lines in Windows, Unix, etc.

The OS provides a standard interface between programs (user
or system) and devices

— file system (disk), sockets (network), frame buffer (video)

Device drivers are the routines that interact with specific device
types
— encapsulates device-specific knowledge

* e.g., how toinitialize a device, how to request 1/0O, how to handle
interrupts or errors

« examples: SCSI device drivers, Ethernet card drivers, video card
drivers, sound card drivers, ...

Note: Windows has ~35,000 device drivers!

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 12

Secondary storage

Secondary storage (disk, FLASH, tape) is persistent memory
— often magnetic media, survives power failures (hopefully)

Routines that interact with disks are typically at a very low level
In the OS

— used by many components (file system, VM, ...)

— handle scheduling of disk operations, head movement, error
handling, and often management of space on disks

Usually independent of file system
— although there may be cooperation

— file system knowledge of device details can help optimize
performance

* e.g., place related files “close together” on disk

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

13

File systems

Secondary storage devices are crude and awkward
— e.g., ‘write a 4096 byte block to sector 12”

File system: a more convenient abstraction
— hardware independent interface looking up to apps
— hardware dependent implementation looking down to hw

FS defines logical objects, like files and directories
— files represent data, stored somewhere on disk

— directories represent file meta-data, like name, owner, creation
time, ...
— user code operates on files/directories, not on disk blocks

FS defines operations on objects, like creat, read, write, stat

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

14

“File system”

« The term “file system” has at least three common
meanings

— The generic notion of providing a more convenient abtraction
layered on some storage device

— A particular software implementation of that generic idea, e.g.,
NTFS or FAT or ext4

— A self-contained, and so physically portable, bunch of bits on some

storage device
» File systems are mountable

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 15

File system operations

« The file system interface defines standard operations:
— file (or directory) creation and deletion

— manipulation of files and directories (read, write, extend,
rename, protect)

— Copy
— lock

« File systems may also provide higher level services
— accounting and quotas
— backup (must be incremental and online!)
— (sometimes) indexing or search
— (sometimes) file versioning
— (sometimes) encryption

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 16

Protection

Protection is a general mechanism used throughout
the OS

— all resources needed to be protected
* memory
* processes
« files
« devices
« CPUtime
* network bandwidth (?)

Protection mechanisms motivations:

— “I'm not perfect” -- help to detect and contain unintentional
errors

— “There are adversaries” -- preventing malicious abuses

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

17

Command Interpreter (shell)

A particular program that handles the interpretation of users’
commands and helps to manage processes

— user input may be from keyboard (command-line interface), from
script files, or from the mouse (GUIs)

— allows users to launch and control new programs

On some systems, command interpreter may be a standard part
of the OS (e.g., MS DOS, Apple I, JOS)

On others, it’s just non-privileged code that provides an interface
to the user

— e.g., bash/csh/tcsh/zsh on UNIX

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 18

OS structure

« It's not always clear how to stitch OS modules
together:

[Command Interpreter]
.4

o

i

(Informa‘rion Se/u/ce
/

Error Handling
// / \\ /N\] XX ~
W’rec‘rion Syste ‘ ‘% \
N 4\
/ / S, LY
‘ Memory] Sec;ndary Storage
[Process Management +——={ Management ‘ Management

ey
O System |

Accounting Sys’renﬂ

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 19

OS structure

An OS consists of all of these components, plus:
— many other components
— system programs (privileged and non-privileged)
* e.g., bootstrap code, the init program, ...

Major issue:
— how do we organize all this?
— what are all of the code modules, and where do they exist?
— how do they cooperate?

Massive software engineering and design problem
— design a large, complex program that:

« performs well, is reliable, is extensible, is backwards compatible, ...

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

20

Windows Longhorn slips again,
becomes megaproject

By John Lettice
Published Tuesday 25th June 2002 10:55 GMT

Vista debut hits a delay

By Ina Fried

Staff Writer, CNET News.com

Published: March 21, 200&, 3:01 PM PST
Last modified: March 21, 2006, 3:13 PM PST

[%: TalkBack [7E-mail [=]Print o del.icio.us Digg this

update Microsoft on Tuesday announced a delay of Windows
Vista that will mean PCs with the new operating system won't go
on sale until January.

The software maker said it will still wrap up development of the operating
system this year and make it available to volume-licensing customers in
November., However, Microsoft said a delay of a few weeks in Vista's
schedule meant that some PC makers would be able to launch this year
and others would not. As a result, Windows chief Jim Allchin said the
company is delaying the broad launch of the product until January.

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

21

Early structure: Monolithic

« Traditionally, OS’s (like UNIX) were built as a
monolithic entity:

user programs

0OS everything

hardware

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Monolithic design

 Major advantage:
— cost of module interactions is low (procedure call)
« Disadvantages.
— hard to understand
— hard to modify
— unreliable (no isolation between system modules)
— hard to maintain
 What is the alternative?

— find a way to organize the OS in order to simplify its design
and implementation

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Layering

One traditional approach is layering
— implement OS as a set of layers
— each layer presents an enhanced ‘virtual machine’ to the layer above

The first description of this approach was Dijkstra’s THE system (1968)

— Layer 5: Job Managers

« Execute users’ programs
— Layer 4. Device Managers

« Handle devices and provide buffering
— Layer 3: Console Manager

* Implements virtual consoles
— Layer 2: Page Manager

* Implements virtual memories for each process
— Layer 1: Kernel

* Implements a virtual processor for each process
— Layer O: Hardware

Each layer can be tested and verified independently
— Layering helped implementation and aided attempt at formal verification of correctness

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 24

Problems with layering

* Imposes hierarchical structure

— but real systems are more complex:
« file system requires VM services (buffers)
VM would like to use files for its backing store

— strict layering isn’t flexible enough

« Poor performance
— each layer crossing has overnead associated with it

« Disjunction between model and reality
— systems modeled as layers, but not really built that way

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

25

Hardware Abstraction Layer

Hardware AbstractionLayer
(device drivers, assembly routines)

 An example of layering in modern operating systems

« Goal: separates hardware-specific routines from the
‘core” OS

— Provides portability
— Improves readability

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

26

Alternative to Monolithic: Microkernels

Introduced in the late 80’s, early 90’s
— recent resurgence of popularity
Goal:

— minimize what goes in kernel
— organize rest of OS as user-level processes

This results in:

— better reliability (isolation between components)

— ease of extension and customization

— poor performance (user/kernel boundary crossings)

First microkernel system was Hydra (CMU, 1970)

— Follow-ons: Mach (CMU), Chorus (French UNIX-like OS),
OS X (Apple)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 27

user
Processes

system
processes

microkernel

Microkernel structure illustrated

firefox powerpoint

apache photoshop c

itunes word %

3

file system | [network]| S
o

paging | @
communication 3 é

low-level VM processor 8 =
protection control D D
hardware

© 2017 Gribble, Lazowska, Levy, Zahorjan,
Zbikowski

28

User <
mode

-

EXAMPLE: WINDOWS

Appllcatlon program

Photo-
shop

Kernel
mode

Windows—including scheduling, memory
management, process management, file system,
device drivers (1/0) and much, much more

From Andy Tanenba'um 29

User
mode

ARCHITECTURE OF MINIX 3

CECE C//
@QC S
QOO0 ©

Process

Servers

Drivers

Microkernel handles interrupts,
processes, scheduling, IPC

O ZUIT G)))) 1
From Andy Tanenbaum

30

Virtual Machine Monitors

Type-1 VMM
(Hypervisor)

Examples:
Windows Server
virtualization
(WSv)

Xen
VMWare ESX

* Transparently implement “hardware” in software

* Voila, you can boot a “guest OS”

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski
From http://port25.technet.com/

31

Summary and Next Module

 Summary

OS design has been a evolutionary process of trial and error.
Probably more error than success

Successful OS designs have run the spectrum from
monolithic, to layered, to micro kernels, to virtual machine
monitors

The role and design of an OS are still evolving
It is impossible to pick one “correct” way to structure an OS

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 32

